

Applications of Nanopore Sequencing for Infectious Disease Detection

ل کس

Stephanie Hao Johns Hopkins University May 26, 2016

Overview

Identification of Pathogenic Organisms in the Clinical Setting Vancomycin resistance surveillance in rectal swabs Clinical case study of *K. pneumoniae* Flu virus

Identification of Pathogenic Organisms in the Clinical Setting

Identification of Pathogenic Organisms

Clinical Setting

Majority of testing is culture based

Standard is ~48 hours for identity and antimicrobial susceptibility

Broadly grow organisms over wide range of medias

Identify organisms

Test for antimicrobial susceptibility

Other organisms more fastidious

Fungi, mycobacteria can take weeks to grow in lab

Identification of Pathogenic Organisms

Metagenomic Sequencing

Single test modality

- No a priori knowledge necessary
- Only requires genomic material found in sample
- Unbiased broad and amplifies whatever is present

*courtesy of Oxford Nanopore

Vancomycin Resistance Detection

Vancomycin Resistance Enterococci

- In the United States, VRE is commonly acquired in a healthcare setting
- VRE testing done for every admission at Johns Hopkins
 - 20000 samples per year
- Major Organisms of Interest:
 - E. faecalis (vanB resistance)
 - E. faecium (vanAresistance)
 - *K. pneumonia* (KPC resistance)

% Enterococci that are Vancomycin Resistant

Species	Europe	US	Canada	Asia-Pacific	Latin-America
E. faecium	8.8	79.4	22.4	14.1	48.1
E. faecalis	1.0	8.5	0.1	0.01	3.1
All enterococci	4.0	35.5	6.0	11.9	12.9

O'Driscoll, Crank, 2015. Infection and Drug Resistance

Vancomycin Resistance in Rectal Swabs

Procedure

Remnant rectal swab samples

All confirmed positive for VRE by clinical testing Extract DNA (Zymo MiniPrep) Low Input Prep for Sequencing Nextera XT for Illumina Miseq Low Input PCR for Oxford Nanopore Analysis Kraken

Comprehensive Antibiotic Resistance Database (CARD)

Samples

Results via Culture

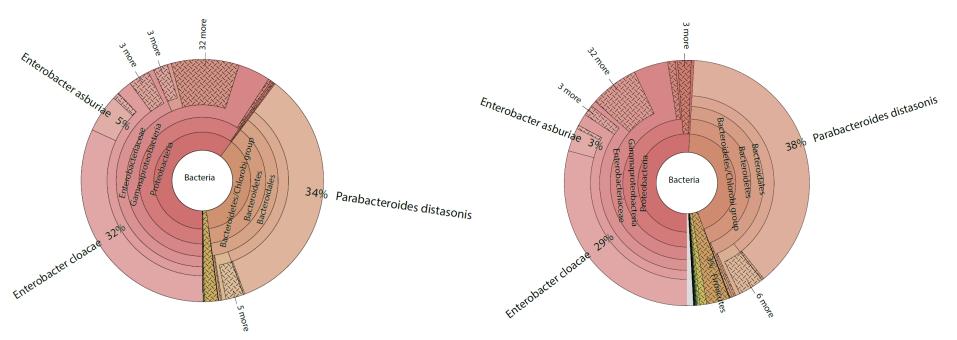
Sample	Chromagenic results*	Carbapenem resistance?	Fermenter in sample?
7	E. faecium	Yes	Yes, Lactose
10	E. faecalis	No	Yes, Non-lactose

*On chromogenic agar, *E. faecium* isolates turn pink, *E. faecalis* isolates turn blue

Image courtesy of CHROMAgar

Samples Results via Culture vs NGS

Sample	Chromagenic results	Detected via NGS	Carbapenem resistance?	KPC gene detected?	Dominant Organism
7	E. faecium	Yes	Yes	Yes	K. pneumoniae
10	E. faecalis	Yes	No	No	Enterobacter, Parabacteroides

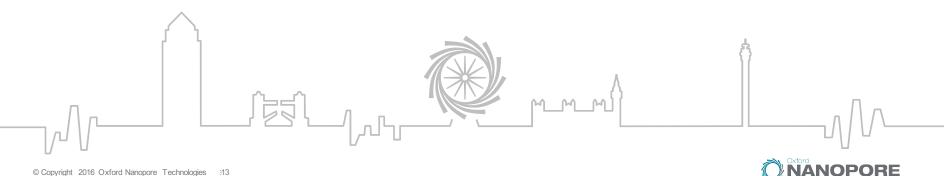

NGS can detect what we see with culture!

Kraken: Illumina vs. Nanopore

Illumina MiSeq (12M reads)

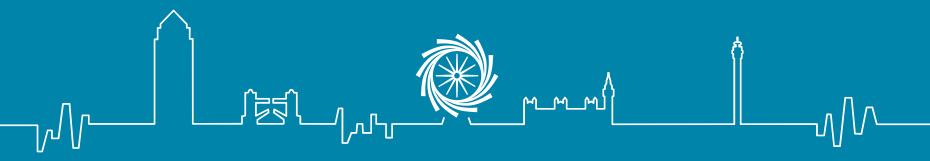
MinION (57k reads)

MinION shows largely the same classification as MiSeq via Kraken

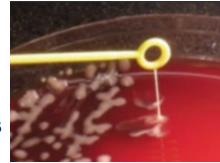

Comparison of Illumina to Nanopore (Kraken)

Sample	Sequencer	Total Reads	# E. faecium	% E. faecium	# E. faecalis	% E. faecalis	# K. pneumoniae	% K pneumoniae
7	Illumina	15052147	35343	0.235	142	9.43E-4	5773568	38.36
7	Nanopore	105381	236	0.224	11	1.04E-2	39634	37.61
10	Illumina	7344961	4921	0.067	13056	0.178	29966	0.408
10	Nanopore	57225	40	0.0699	129	0.225	259	0.453

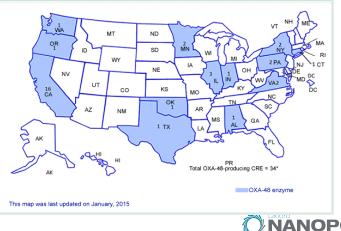
Comparison of Illumina to Nanopore: Antibiotic Resistance (BLAST)


Sample	Sequencer	Total Reads	# vanA	% vanA	# vanB	% vanB	# KPC	% KPC
7	Illumina	15052147	14	9.3E-5	0	0	7114	4.73E-2
7	Nanopore	105381	1	9.49E-4	0	0	227	2.15E-1
10	Illumina	7344961	6	8.17E-05	115	1.57E-03	3	4.08E-5
10	Nanopore	57225	0	0	4	6.99E-3	0	0

Clinical Case Study



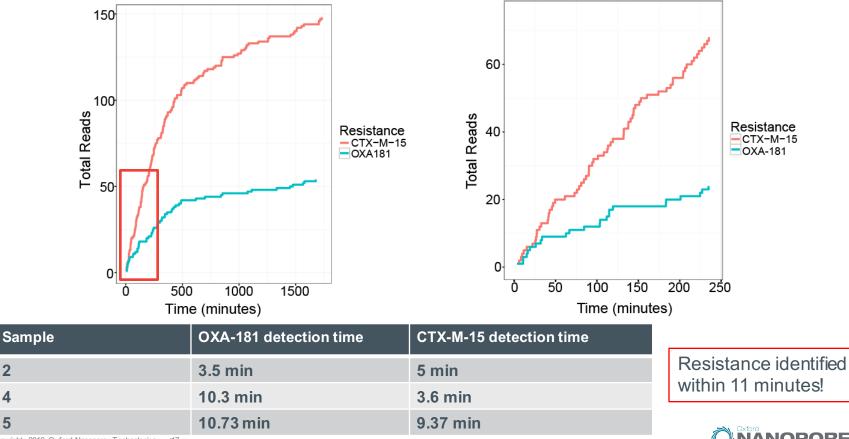
Hypervirulent (hypermucoviscous) K. pneumoniae


A new variant of *Klebsiella pneumoniae* First described in the Asian Pacific Rim 1980s Now increasingly recognized in other countries

- Defining clinical features:
 - Serious, life-threatening communityacquired infection in younger healthy hosts
 - Liver abscess, pneumonia, meningitis and endophthalmitis
 - · Metastatic spread

Source: Shon, Rajinda, Russo 2013 CDC http://www.cdc.gov/hai/organisms/cre/TrackingCRE.html#CREmapOXA

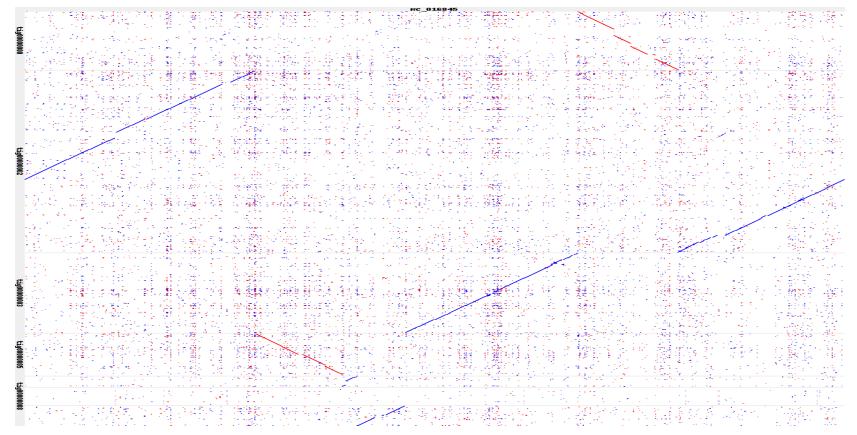
OXA-48-Type-producing Carbapenem-resistant Enterobacteriaceae (CRE) isolates reported to the Centers for Disease Control and Prevention (CDC) as of January 2015, by state



Isolates Extracted

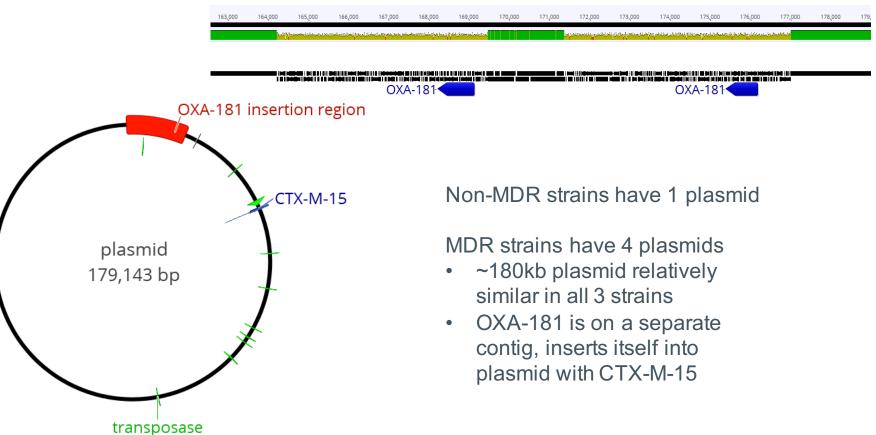
Isolate	Date	Source	Organism	Resistance
1	July 29, 2015	Endo/Nasal	K. pneumoniae	no
2	August 20, 2015	Endo/Nasal	K. pneumoniae	yes
3	September 4, 2015	Abscess, Kidney	K. pneumoniae	no
4	September 10, 2015	Stool	K. pneumoniae	yes
5	September 10, 2015	Stool	E. coli	yes

Antibiotic Resistance Detection


© Copyright 2016 Oxford Nanopore Technologies -17

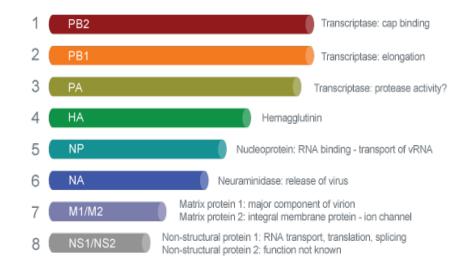
2

4


5

De Novo Genome Assembly

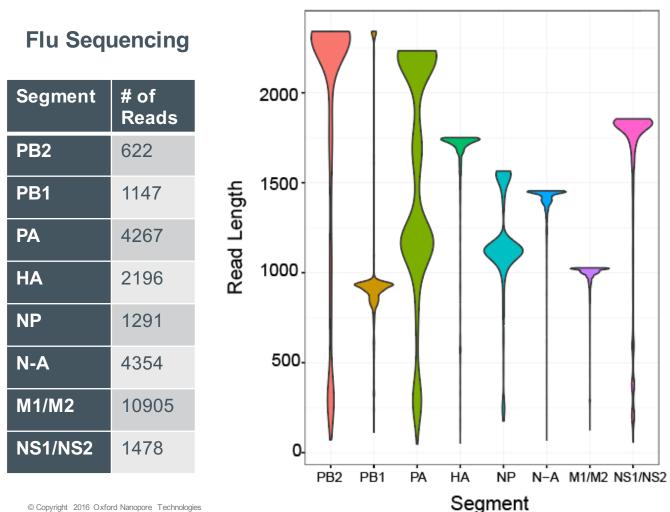
Plasmids



Flu Strain Analysis

Influenza Genome

Influenza – single stranded, helically shaped RNA virus


- Influenza is made of 8 different genomic RNA segments.
- These segments can be amplified by primers which are specific to each segment, but conserved between influenza strains
- Fragments range in size between 900-2.4kb; nanopore would allow for full length sequencing.

Influenza A genomic RNAs

From Thermo Fisher Scientific

Majority of reads are full length

Full length reads don't occur in some segments due to defective interference particles

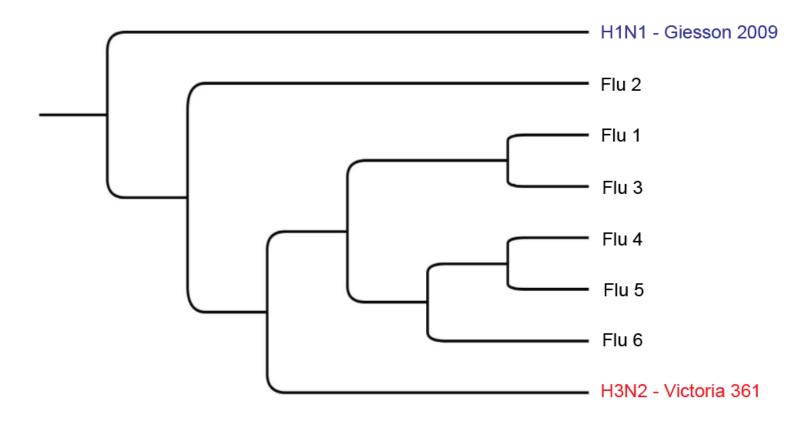
© Copyright 2016 Oxford Nanopore Technologies

Observed mutations

Control

	miseq	oxford
	· · ·	
Segment_1 PB2	0	1*
Segment_2 PB1	1*	NA
Segment_3 PA	0	0
Segment_4 HA	0	0
Segment_5 NP	0	0
Segment_6 NA	0	0
Segment_7 M1	0	0
Segment_8 NS1	0	0

*mutations appear at ends of sequence or internal abrupt changes in sequencing depth


Clinical

	miseq	oxford
Segment_1 PB2	28	14*
Segment_2 PB1	13	NA*
Segment_3 PA	25	9*
Segment_4 HA	31	NA*
Segment_5 NP	17	14**
Segment_6 NA	14	14
Segment_7 M1	2	2
Segment_8 NS1	9	9

*discrepancy due to incomplete segment coverage **discrepancy due to stringency of consensus generation

Flu Clinical Variations

Nanopore sequencing looks promising for detection of infection and antibiotic resistance

Rapid results (under 15 min)

Long/Full length reads

Low capital investments

Portable

Still a bit noisy in terms of detecting individual mutations and rare cases Increased yield and accuracy with further development

Acknowledgements

Timp Lab (JHU BME)

- Rachael Workman
- Isac Lee
- Yunfan Fan
- Winston Timp

Infectious Diseases/Medical Microbiology (JHMI)

- Annie Antar
- Patricia Simner
- Belita Opene

Schatz Lab (CSHL/JHU)

- James Gurtowski
- Michael Schatz

Applied Physics Laboratory (JHU)

ሰ-ሰ

- Peter Thielen
- Thomas Mehoke

Funding

CEIRS Foundation

