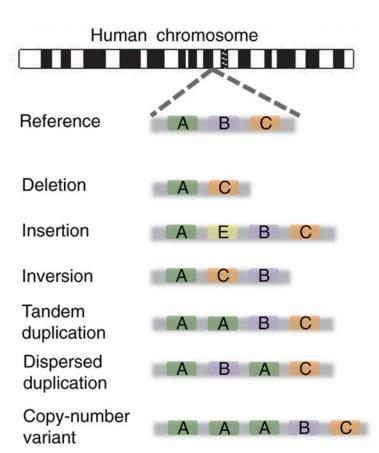

Nanopore Community Meeting 2016 New York

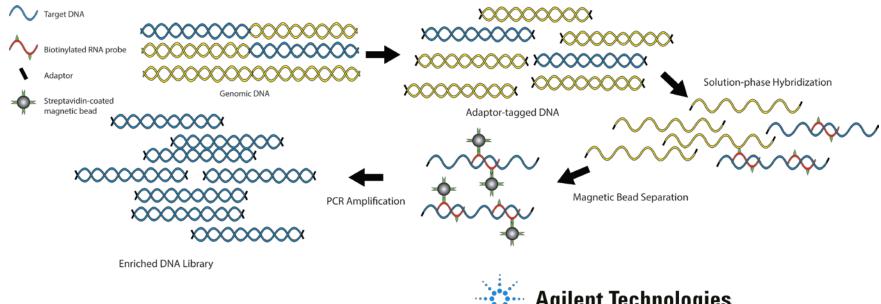
Structural variation detection on human DNA using targeted sequencing


Isac Lee

Department of Biomedical Engineering, Johns Hopkins School of Medicine

December 2, 2016

Structural Variation


- Abnormality in large region (50b-3mb) of a chromosome
- Pervasive in cancer 50% of pancreatic ductal adenocarcinoma (PDAC)
- Common in tumor suppressor genes such as *CDKN2A* and *SMAD4*
- Nanopore sequencing can resolve SVs
 - But High coverage desired for heterogeneous samples
 - o and size of human genome: 3 Gbps
- We know where SVs tends to occur

Baker, Monya. 2012. Nature Methods

Solution-phase Hybridization Capture

Agilent SureSelectXT Targeted Sequencing System

- ~90 bps biotinylated RNA probes complementary to target sequence
- Biotin-streptavidin interaction to enrich for the targeted region
- Optimization for long-reads : > 2 kb

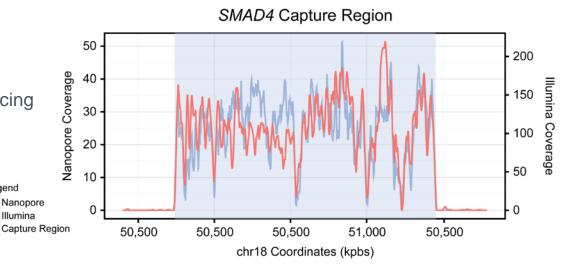
Targeted Capture Optimization

Collaboration with Josh Wang from Agilent

- Trial 1
- Probe tiling, No empty spaces between probes
- Target region
 - OCDKN2A: 1.5 Mbps
- Low stringency to allow mismatches
- Result: 2.28 % on-target

- Trial 2
- No tiling, average 400 bp space between probes
- Target regions
 - OCDKN2A: 1.5 Mbps
 - SMAD4: 850 Kbps
- High stringency to limit off-target capture
- Consideration of known SV breakpoints
 - PDAC SVs from James Eshleman lab
- Result: 30 % on-target

Targeted Sequencing Performance


Control : NA12878 lymphoblast

Sample : PDAC from Eshleman lab

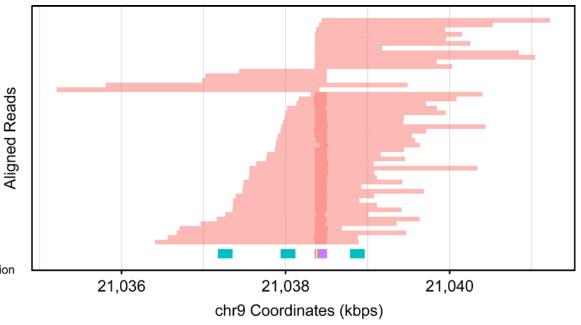
Illumina short-read targeted sequencing for comparison

> 300-fold enrichment

> 20X average coverage

	Total yield (reads)	On-target	On-target percentage	Fold enrichment	Coverage
Illumina NA12878	4.4m	3.7m	85%	641X	113X
Nanopore NA12878	107k	32k	30%	353X	27X
Nanopore PDAC	56k	20k	26%	332X	20X

Legend

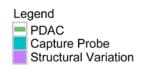

Nanopore Structural Variation Detection

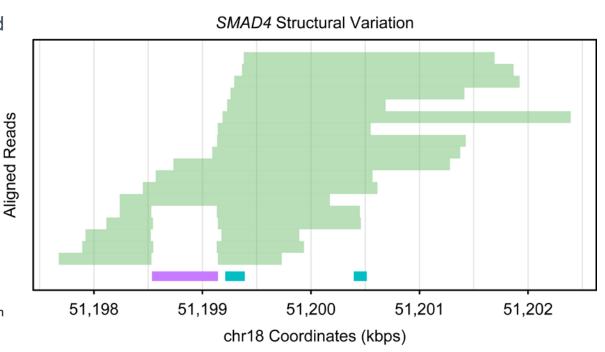
NA12878 SVs

Sniffles by Michael Schatz lab

- chr9:21,038,354 21,038,506
- 152 bps duplication
- Validated with PacBio data from Genome in a Bottle (Mt. Sinai School of Medicine)

Legend
NA12878
Capture Probe
Structural Variation
PacBio SV





Nanopore Structural Variation Detection

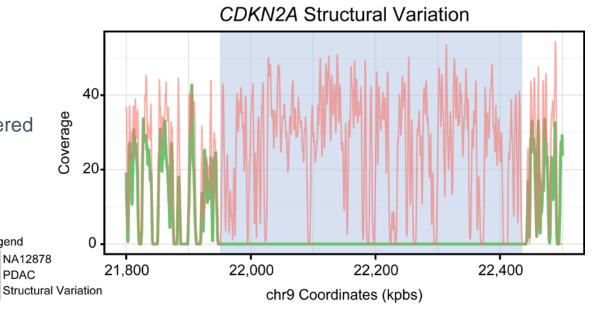
PDAC SVs

- Novel, putative SVs detected from PDAC
- o chr18: 51,198,535 51,199,143
- 600 bps deletion
- Possibly allele-specific SV

Nanopore Structural Variation Detection

Legend

PDAC SVs


Large window of coverage

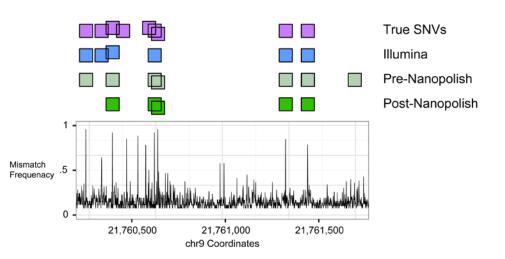
Absence in *CDKN2A* region

- chr9:21,950,000 22,436,000
- 486 kbps SV
- Homozygous Deletion discovered previously

Sniffles did not detect this SV

No reads covering either breakpoint

Single Nucleotide Variation Detection


NA12878 SNVs

Nanopolish by Jared Simpson et al to improve SNV calling

VIN2	comi	parisor	10
SINV	COIII	parisor	10

	Illumina	Pre-polish	Post-polish
Avg. Coverage	113	27	27
Correct	1133	2485	947
Total	1211	4138	1017
Precision	94%	60%	93%
Sensitivity	32%	69%	26%

Number of True SNVs: 3587(Eberle, et al. bioRxiv, 2016)

- Nanopore SNV detection after nanopolish is comparable to Illumina
- Phased SNV analysis is possible with coverage from targeted sequencing

Conclusions and Future Works

Solution-phase Hybridization-Capture

- Achieves sufficient coverage for SV and SNV detection
- Longer reads and higher on-target percentage: recent run 40% on-target, 3kb avg. length

Structural Variation Detection

- SVs can be detected with a single flowcell
- Allele-specific SVs may also be resolved

Single Nucleotide Variation Detection

- SNV detection is comparable to Illumina sequencing
- Nanopolish for haplotyping and phased SNV analysis

Acknowledgments

WHITING SCHOOL of ENGINEERING

Timp Lab – Johns Hopkins University Winston Timp, PhD Rachael Workman, MS

Agilent Technologies

Agilent Technologies
Josh Wang, PhD
Jonathan Levine, PhD

Eshleman Lab – Johns Hopkins School of Medicine James Eshleman, MD, PhD Alexis Norris, PhD

