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Abstract

Methods

Iso-seq Transcriptome Analysis of Hummingbird Archilochis Colubris

Sample prep: 
Wild adult male ruby-throated hummingbirds (Archilochus colubris) were captured at the University of Toronto Scarborough using 
modified box traps. Birds were housed in the University of Toronto Scarborough vivarium and fed NEKTON-Nectar-Plus (Nekton, 
Tarpon Springs, FL, USA) ad libitum. Birds were sacrificed after ad libitum feeding, and tissues were sampled immediately after euth-
anization using RNAse-free tools. Six liver tissue samples were collected from six birds. Tissues were homogenized at 4ºC in 1 ml 
cold Tri Reagent using an RNase free glass tissue homogenizer and RNase free syringes of increasing needle gauge. Up to 100 mg 
of tissue was used per 1 ml of Tri Reagent, and chloroform extraction was performed twice to ensure quality. RNA was precipitated, 
centrifuged down, washed with ethanol, vacuum dried and eluted in RNAse free water. DNAse I digestion and spin column cleanup 
was performed. RNA concentration and RIN was determined with RNA Bioanalyzer.

cDNA synthesis and SMRTbell template preparation:

Results

Analysis
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From series “Gems of Brazil” by Martin Johnson Heade

The hummingbird occupies a unique place in the vertebrate world. It has the high-
est known metabolic rate, needed to fuel incredible energetic demands of hover-
ing flight the bird performs daily to collect nectar from flowers. To sustain hovering 
flight, a hummingbird needs to maintain a wing beat up to 200 beats per second. 
This remarkable feat is made possible by extremely high metabolic rates in the 
liver, with overall enzymatic activity operating at the peak of catalytic efficiency. 
Understanding the molecular basis of such extreme physiology will provide foun-
dational knowledge to enable rational engineering of metabolic circuits in mamma-
lian cells. To do this, we generated a de novo transcriptome of the hummingbird 
liver using PacBio IsoSeq, yielding a total of 8.6Gb of sequencing data, or 2.6M 
reads from 4 different size fractions. We analyzed data with the SMRTAnalysis 
IsoSeq 3.0 platform, including classification of reads, clustering of isoforms (ICE) 
followed by error-correction (Arrow).  Here we describe our process of data QC, 
transformation (ORF prediction and translation), annotation, and orthology predic-
tion, and work on pathway analysis and proteins of interest. 
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Isoform sequencing is in the unique position of providing full length mRNA transcripts, giving clear insight into coding se-
quences for novel protein products.  We have been able to identify some homologies between the ruby-throated hum-
mingbird and other species, and see interesting differences that hint as to how extreme metabolisms function. Future 
analysis will include more in-depth analysis of alternatively spliced proteins, in identity, abundance, and functionality. 
Although a genome assembly exists for Anna’s hummingbird (Calypte anna), the gene annotation produced by homolo-
gy-based annotation is still missing several key orthologs important in metabolism.  Future work will include whole tran-
scriptome analysis to search for orthologous genes in human and chicken, as well as the production of a high quality 
genome, which will help greatly in identifying and understanding the significance of isoforms. 
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in this study were approved by and performed in accordance with the requirements of U. Toronto Animal Care 
Committee. This study was financially supported by awards from PacBio’s “World’s Most Interesting Genome” 
grant and Human Frontiers in Science Grant.   
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A] Diagram of fatty acid and triglyceride synthesis pathways, with investigated enzymes in blue. B] Heat map illustrating percent 
alignment identity between the organisms on x-axis and ruby-throated hummingbird, with each row representing the identities for 
the given enzyme. 
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Hummingbirds perform extraordinary metabolic feats, including 
massive daily weight fluctuations, rapid fuel-switching and fuel utili-
zation. We sought to probe mechanism and adaptations present in 
this species through whole-transcriptome sequencing of the hum-
mingbird liver using Pacbio Iso-seq. 
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Introduction

A] Data length distribution from 40 SMRT cells, black line represents Mb of reads in dataset longer than the given read length. B] 
BUSCO benchmarking  shows success in capturing predicted transcript diversity, with deficiencies potentially a consequence of 
single-tissue analysis. C] Cogent collapse. MATR3 example demonstrates Cogent success in reducing redundant isoforms and 
collapsing to unique.  
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Transcriptome-wide characterization and comparison

A Case Study: Hepatic lipogenic pathway
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A] Alignment lengths of high quality filtered transcripts from Ruby-throated hummingbird against its closest sequenced relative, 
the Anna’s hummingbird (Calypte anna). B] Orthology analysis using OrthoMCL reveals large degree of transcript conservation 
and hints at interesting proteins for further investigation. C] GO analysis from 1:1 orthologs from OrthoMCL reveal larger than ex-
pected numbers of genes pertaining to lipid metabolism represented in the 1:1 Anna’s and chicken comparison groups. 

0

1

2

3

ruby all ruby:annas ruby:gallus swift all ruby:swift

Organism(s) compared

O
bs

er
ve

d/
ex

pe
ct

ed

0.25

0.50

0.75

1.00
p.value

*

*


