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Epigenetics: Modern
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» Modern Definition of epigenetics involves heritable changes other than genetic sequence, e.g., positive
feedback, high order structure, chromatin organization, histone modifications, DNA methylation.
* An analogy to a computer system:
* DNA Sequence = Hardware
» User input = Environment
» Systems Biology = Running programs
* Epigenetics = RAM
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Nanopore: Methylation

» Differences between methylated and
unmethylated cytosine have been
detected using nanopores.

» Methylation state can be called with
90% accuracy.

* We are writing a methylation detector
for Oxford Nanopore for 5-
methylcytosine.
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Generation of methylated Samples
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* To generated methylated samples, we treat unmethylated DNA
(lambda, dam-/dcm- E. Coli, PCR product) with M. Sssl 50%
methyltransferase
* We confirm the CG specific methylation using Illumina bisulfite
seqguencing of the sample — pictured right is methylation in different
contexts E. Coli dataset treated with M. Sssl (red) versus untreated 25% =
(green)
0% =

CGs CHG CHH
© Copyright 2016 Oxford Nanopore Technologies | 4 il!" JOHNS HOPKINS @ NANOPORE

BIOMEDICAL ENGINEERING



. e R7.3 Pore R9 Pore
Emission Probabilities o

90 =

* We measured distributions of
current for k-mers from E. Coli
M.Sssl treated (methylated; green)
and untreated (unmethylated; red)
samples on both R7.3 and R9
flowcells.

* Boxplots of AGGTCG and TCGAGT
k-mers which both contain CGs
show significant differences in
current in some cases (AGGTCG

R7.3) and little to none in others :
(TCGAGT R7.3)
e R9 current distribution seem wider 50 =

in both cases, but gives better !
discrimination in TCGAGT.
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Distance of methylation effect 0 PEOQ%
1 ELE)

* We looked at the difference in current levels
dependent on the position of the methylated
base — plotted are the current differences for
R7.3(blue) and R9 pores(orange).

» Signal seems again stronger but more
variable for R9 pores than R7.3

* Methylation can either reduce current or
increase it.

* Some positions are more sensitive to
methylation than others.
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Nanopore: nanopolish methyltrain

Multiple bases influence the
current passing through the pore.
Oxford uses 6-mers for a HMM to
perform basecalling.

Oxford basecalling does not take
into account the 5% base — mC.
With nanopolish we can call the
probability:

P(D[Sm)
P(D|S)

Where S, is the probability
methylated for a given observable
D and S, the probability
unmethylated

We then take the log of this
likelihood ratio.
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NA12878 Methylation
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NA12878 (lymphoblast) gDNA: lllumina WGBS on X-axis (24X coverage) (SRA: GSM1002650) vs.

R7.3 (0.02X) or R9 (0.13X) nanopore sequencing.

Correlation of 0.83 (R7.3) and 0.84 (R9) — most gene promoters unmethylated




Binned Methylation vs. Transcription Start Sites
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Treatment
« PCR

a« PCR+M.5ssl
= hisulfite

+ natural

Pore

« R7.3
+ R9

* On human genomic samples:

* Binning methylation levels vs. distance to TSS sites,
compared to bisulfite data (NA12878).

 We also generated completely methylated (M.Sssl
treated; ~95% meth) and unmethylated — used to
generate the ROC curve (right)

 R7.391% accurate at 68% of sites

* R994% accurate at 77% of sites

© Copyright 2016 Oxford Nanopore Technologies | 9

1.00

0.754

0.504

True positive rate

0.257

0.00+

Pore

—R7.3
—R9

0.00

I | |
025 050 0.75 1.00
False positive rate

JOHNS HOPKINS @ NANOPORE

BIOMEDICAL ENGINEERING



Cancer-Normal Comparison
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Future Work 80 - £5 Unmethylated '
E3 Methylated
<
« Expand to non-CpG methylation % 75—
« Expand to non 5-methylcytosine S
methylation = 20 —
» Strong signal for N6- O
methyladenine g
* Apply to clinical samples o 65—
» Exogenous labeling of DNA and o
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Nanopore: Methylated Error

*We sequenced PCR’d E. Coli gDNA samples
with either Sssl or no treatment on v7.3 and v9
chips.

*Plotted is a distribution of the per read %
correct, mismatch, insertion and deletion evens,
generated with piledriver after bwa mem
alignment.

*Notably, mismatch error rate and indel rate are
higher on methylated samples than
unmethylated — if you aren’t interested in
methylation, PCR your samples.

*R9 data has a generally higher correct rate, but
still a significant change in % correct per read.

Simpson, Workman, et al. in revision (2016)
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Single Read Methylation: Distribution Cancer Normal

o -
 Using traditional short-read methods, the K I I
ability to characterize methylation pattern
is limited, but intriguing. Riad - .
» Distribution of methylation patterns
within cancer and normal samples are o9 - -
shown to the right. Colors in the stacked
bar graph represent different sequenced 999 . I
samples.
» Selected areas have significantly o I I
different methylation between normal
and cancer samples Raad . |
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