Nanopore Community Meeting 2016 New York

BIOMEDICAL ENGINEERING

Measuring DNA Methylation with the MinION

Winston Timp Department of Biomedical Engineering Johns Hopkins University 12/1/16

Epigenetics: Modern

- Modern Definition of epigenetics involves heritable changes other than genetic sequence, e.g., positive feedback, high order structure, chromatin organization, histone modifications, DNA methylation.
- An analogy to a computer system:
 - DNA Sequence = Hardware
 - User input = Environment
 - Systems Biology = Running programs
 - Epigenetics = RAM

Nanopore: Methylation

- Methylation state can be called with 90% accuracy.
- We are writing a methylation detector for Oxford Nanopore for 5methylcytosine.

BIOMEDICAL ENGINEERING

Differences between methylated and unmethylated cytosine have been detected using nanopores.

Generation of methylated Samples

BIOMEDICAL ENGINEERING

Emission Probabilities

- We measured distributions of current for k-mers from *E. Coli* M.SssI treated (methylated; green) and untreated (unmethylated; red) samples on both R7.3 and R9 flowcells.
- Boxplots of AGGTCG and TCGAGT k-mers which both contain CGs show significant differences in current in some cases (AGGTCG R7.3) and little to none in others (TCGAGT R7.3)
- R9 current distribution seem wider in both cases, but gives better discrimination in TCGAGT.

Distance of methylation effect

- We looked at the difference in current levels dependent on the position of the methylated base plotted are the current differences for R7.3(blue) and R9 pores(orange).
- Signal seems again stronger but more variable for R9 pores than R7.3
- Methylation can either reduce current or increase it.
- Some positions are more sensitive to methylation than others.

Nanopore: nanopolish methyltrain

75

0

52

50

Current (pA)

- Multiple bases influence the current passing through the pore.
- Oxford uses 6-mers for a HMM to perform basecalling.
- Oxford basecalling does not take into account the 5th base – mC.
- With *nanopolish* we can call the probability:

$$\frac{P(\mathcal{D}|S_m)}{P(\mathcal{D}|S_r)}$$

- Where *S_m* is the probability methylated for a given observable *D* and *S_r* the probability unmethylated
- We then take the log of this likelihood ratio.

NA12878 Methylation

- NA12878 (lymphoblast) gDNA: Illumina WGBS on X-axis (24X coverage) (SRA: GSM1002650) vs. R7.3 (0.02X) or R9 (0.13X) nanopore sequencing.
- Correlation of 0.83 (R7.3) and 0.84 (R9) most gene promoters unmethylated

Binned Methylation vs. Transcription Start Sites

Cancer-Normal Comparison

- We sequenced this fraction on nanopore and bisulfite Illumina seq
- Long reads measure *phased* methylation

	MCF10A.MERGED.NANOPORE	Is Methylated
MCF10A.MERGED.NANOPORE;5461		
MCF10A.MERGED.NANOPORE;5460	• • • • • • • • • • • • • • • • • • • •	FALSE
MCF10A.MERGED.NANOPORE;5459		• TRUE
MCF10A.MERGED.NANOPORE;5458		
MCF1UA.MERGED.NANOPORE;5457		
MCF1UA.MERGED.NANOPORE;5456		
MCF10A.MERGED.NANOPORE,5455		
MCF10A MERCED NANOPORE;5454		
MCF10A MERGED NANOPORE:5452		
MCF10A MERGED NANOPORE 5451		
MCF10A.MERGED.NANOPORE:5450		
MCF10A.MERGED.NANOPORE;5449	00 000 00 000 00 00 00 00 00 00 00 00 0	
MCF10A.MERGED.NANOPORE;5448		
MCF10A.MERGED.NANOPORE;5447		
MCF10A.MERGED.NANOPORE;5446		
MCF10A.MERGED.NANOPORE;5445		
MCF10A.MERGED.NANOPORE;5444		
MCF10A.MERGED.NANOPORE;5443		
MCF1UA.MERGED.NANOPORE;5442		
	MDAMB231.MERGED.NANOPORE	
MDAMB231.MERGED.NANOPORE;4533	• • • • • • • • • • • • • • • • • • •	
MDAMB231.MERGED.NANOPORE;4532		
MDAMB231.MERGED.NANOPORE;4531	• • • • • • • • • • • • • • • • • • • •	
MDAMB231.MERGED.NANOPORE;4530		
MDAMB231.MERGED.NANOPORE;4529		
MDAMB231.MERGED.NANOPORE;4528		
MDAMB231.MERGED.NANOPORE;4527		
MDAMB231.MERGED.NANOPORE;4526		
MDAMB231.MERGED.NANOPORE;4525		
MDAMB231.MERGED.NANOPORE;4524		
MDAMB231.MERGED.NANOPORE;4523	• • • • • • • • • • • • • • • • • • •	
MDAMB231.MERGED.NANOPORE;4522		
MDAMB231.MERGED.NANOPORE;4521	• ••• •• •• ••• ••• ••• ••• ••• •••	
MDAMB231.MERGED.NANOPORE;4520		
MDAMB231.MERGED.NANOPORE:4519		
	63815000 63816000 63817000 63818000	1
	Coordinates (Chr9)	
	IOHNS HOPKINS A MANADO	DE

BIOMEDICAL ENGINEERING

ΝΔΝ

Simpson, Workman, in revision (2016)

Future Work

- Expand to non-CpG methylation
- Expand to non 5-methylcytosine methylation
 - Strong signal for N6methyladenine
- Apply to clinical samples
- Exogenous labeling of DNA and readout

Acknowledgments

Timp Lab – Johns Hopkins University

Winston Timp, PhD Rachael Workman, MS

Ontario Institute for Cancer Research

Jared Simpson, PhD P.C. Zuzarte, PhD Matei David, PhD L. J. Dursi, PhD

Nanopore: Methylated Error

- •We sequenced PCR'd *E. Coli* gDNA samples with either SssI or no treatment on v7.3 and v9 chips.
- Plotted is a distribution of the per read % correct, mismatch, insertion and deletion evens, generated with piledriver after bwa mem alignment.
- •Notably, mismatch error rate and indel rate are higher on methylated samples than unmethylated – *if you aren't interested in methylation, PCR your samples.*
- •R9 data has a generally higher correct rate, but still a significant change in % correct per read.

Simpson, Workman, et al. in revision (2016)

Single Read Methylation: Distribution

- Using traditional short-read methods, the ability to characterize methylation pattern is limited, but intriguing.
- Distribution of methylation patterns within cancer and normal samples are shown to the right. Colors in the stacked bar graph represent different sequenced samples.
- Selected areas have significantly different methylation between normal and cancer samples

