Antimicrobial Resistance Detection in Illumina and Nanopore Sequencing

STEPHANIE HAO, B. OPENE, J. GURTOWSKI, M. SCHATZ, P. SIMNER, W. TIMP JOHNS HOPKINS UNIVERSITY

AGBT 2017

Resistance of *Enterococcus faecium* to Vancomycin

Center for Disease Dynamics, Economics & Policy (cddep.org) © Natural Earth

Vancomycin Resistance Enterococci

- In the United States, VRE is commonly acquired in a healthcare setting
- 20000 rectal swabs tested for VRE per year at JHHS
- Major Organisms of Interest:
 - *E. faecalis* (vanB resistance)
 - E. faecium (vanA resistance)

% Enterococci that are Vancomycin Resistant

Species	Europe	US	Canada	Asia-Pacific	Latin-America
E. faecium	8.8	79.4	22.4	14.1	48.1
E. faecalis	1.0	8.5	0.1	0.01	3.1
All enterococci	4.0	35.5	6.0	11.9	12.9

O'Driscoll, Crank, 2015. Infection and Drug Resistance

*Cost is for ChromAgar plate + PCR testing for VRE

Organism Distribution

	Results via Culture		Results via S	Sequencing
Sample	VRE Organisms	CRO	% VRE	% Human
1	E. faecium	No	0.06	8.33
2	E. faecalis	No	0.06	0.02
3	E. faecium	P. aeruoginosa	0.89	5.63
4	E. faecium	E. cloacae	0.016	7.13
5	E. faecium	No	23.6	0.53
6	E. faecium	No	13.5	0.75
7	E. faecium	K. pneumoniae	0.23	0.5
8	E. faecium	No	0.7	41.19
9	E. faecium	No	23.5	2.52
10	E. faecalis	No	0.18	0.14

Organism Distribution - VRE

	Results via Culture		Results via S	Sequencing
Sample	VRE Organisms	CRO	% VRE	% Human
1	E. faecium	No	0.06	8.33
2	E. faecalis	No	0.06	0.02
3	E. faecium	P. aeruoginosa	0.89	5.63
4	E. faecium	E. cloacae	0.016	7.13
5	E. faecium	No	23.6	0.53
6	E. faecium	No	13.5	0.75
7	E. faecium	K. pneumoniae	0.23	0.5
8	E. faecium	No	0.7	41.19
9	E. faecium	No	23.5	2.52
10	E. faecalis	No	0.18	0.14

VRE do not generally make up a large part of the microbiome

Organism Distribution - Human

	Results via Culture		Results via S	Sequencing
Sample	VRE Organisms	CRO	% VRE	% Human
1	E. faecium	No	0.06	8.33
2	E. faecalis	No	0.06	0.02
3	E. faecium	P. aeruoginosa	0.89	5.63
4	E. faecium	E. cloacae	0.016	7.13
5	E. faecium	No	23.6	0.53
6	E. faecium	No	13.5	0.75
7	E. faecium	K. pneumoniae	0.23	0.5
8	E. faecium	No	0.7	41.19
9	E. faecium	No	23.5	2.52
10	E. faecalis	No	0.18	0.14

Human contamination levels vary, but are typically low.

Organism Distribution – Other

	Results via Culture		Results via Sequencing	
Sample	VRE Organisms	CRO	% VRE	% Human
1	E. faecium	No	0.06	8.33
2	E. faecalis	No	0.06	0.02
3	E. faecium	P. aeruoginosa	0.89	5.63
4	E. faecium	E. cloacae	0.016	7.13
5	E. faecium	No	23.6	0.53
6	E. faecium	No	13.5	0.75
7	E. faecium	K. pneumoniae	0.23	0.5
8	E. faecium	No	0.7	41.19
9	E. faecium	No	23.5	2.52
10	E. faecalis	No	0.18	0.14

We can get more information using shotgun metagenomics sequencing than just from culture alone

Samples – Nanopore

Kraken with customized CARD database

AMR Gene Categories

antibiotic target replacement protein antibiotic target protection protein antibiotic resistant gene variant or mutant antibiotic resistance gene cluster/cassette/operon antibiotic inactivation enzyme aminoglycoside resistance gene aminocoumarin resistance gene

Klebsiella pneumoniae Case Study

Hypervirulent (hypermucoviscous) *K.* pneumoniae

A new variant of *Klebsiella pneumoniae* First described in the Asian Pacific Rim 1980s Now increasingly recognized in other countries

- Defining clinical features:
 - Serious, life-threatening communityacquired infection in younger healthy hosts
 - Liver abscess, pneumonia, meningitis and endophthalmitis
 - Metastatic spread

OXA-48-Type-producing Carbapenem-resistant Enterobacteriaceae (CRE) isolates reported to the Centers for Disease Control and Prevention (CDC) as of January 2015, by state

- Two strains HMV and XDR
- 9 isolates sequenced on both platforms

Isolate	Hospital Day	Source	Resistance	Sequencer
1	1	Blood	No	Illumina and Nanopore
2	3	Endo/Nasal	No	Illumina and Nanopore
3	8	Sputum	Yes	Illumina Only
4	24	Endo/Nasal	Yes	Illumina and Nanopore
5	32	Kidney Abcess	No	Illumina Only
6	32	Kidney Abcess	No	Illumina and Nanopore
7	39	Kidney Abcess	No	Illumina and Nanopore
8	45	Stool	Yes	Illumina and Nanopore
9	45	Stool	Yes	Illumina and Nanopore
10	56	Blood	Yes	Illumina and Nanopore
11	50	Room	Yes	Illumina Only
12	50	Room	Yes	Illumina and Nanopore

Assembly with canu

Assembly with sequencing from v9.4 flowcell

Nanopore Tree

Antibiotic Resistance Detection

Sample	OXA-181 detection time	CTX-M-15 detection time
4	4.8 min	2.8 min
8	10.3 min	3.6 min
9	10.73 min	9.37 min
10	0.99 min	1.00 min
12	13.07 min	6.04 min

Resistance identified within 15 minutes!

Conclusions

Sequencing can provide more insight into environmental context of organisms than just culture alone

Nanopore sequencing could be useful as an aid in providing proper treatment for infectious diseases

• Get full coverage of pathogenic organisms with one flowcell

Rapid time of detection of genes of interest

Acknowledgements

- Timp Lab
 - Isac Lee
 - Rachael Workman
 - Yunfan Fan
 - Winston Timp
- JHMI Infectious Diseases
 - Patricia Simner
 - Belita Opene
 - Annie Antar

- Schatz Lab
 - Michael Schatz
 - James Gurtowski
- Salzberg LabFlorian Bretweiser