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Epigenetics: Historical

* The historical definition of epigenetics,
by Waddington, is how genotype
interacts with the environment to create
phenotype. The analogy is the rolling
ball in the image to the right — the
genotype has set up the hills,
environment nudges the ball into one
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metaphor, lineage committed. h ‘ “ \ ‘ | M”.‘ |ll
» Which valley the ball rolls into is not I|'Il l :l II... . “IF .
predetermined, but a stochastic
behavior.
Waddington, 1940; Raser et al. Science (2005)
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Epigenetics: Modern
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» Modern Definition of epigenetics involves heritable changes other than genetic sequence, e.g., positive feedback,
high order structure, chromatin organization, histone modifications, DNA methylation.
* An analogy to a computer system:
 DNA Sequence = Hardware
e User input = Environment
» Systems Biology = Running programs
* Epigenetics = RAM
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Single Read Methylation: Distribution

We performed hybridization
capture, then lllumina bisulfite
seguencing on 6 paired colon
cancer and normal samples.
We then examined methylation
patterns *within reads* and
looked at the distribution in
normal vs. cancer samples.
Colors in the stacked bar graph
represent different sequenced
samples.

Areas are clusters in regions
which show significantly
different methylation levels (t-
test).
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Single Read Methylation: Distribution

Cancer Normal

« We performed hybridization
capture, then lllumina bisulfite
seguencing on 6 paired colon
cancer and normal samples.

 We then examined methylation
patterns *within reads* and
looked at the distribution in
normal vs. cancer samples.

» Colors in the stacked bar graph
represent different sequenced
samples.

 Areas are clusters in regions
which show significantly
different methylation levels (t-
test).
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Single Read Methylation: Distribution

We performed hybridization
capture, then lllumina bisulfite
seguencing on 6 paired colon
cancer and normal samples.
We then examined methylation
patterns *within reads* and
looked at the distribution in
normal vs. cancer samples.
Colors in the stacked bar graph
represent different sequenced
samples.

Areas are clusters in regions
which show significantly
different methylation levels (t-
test).
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Nanopore: Methylation

Cytosine 5-methylcytosine

» Cytosine methylation increases
DNA stiffness, decreasing
stretching force

» This may allow for filtering of
methylated versus
unmethylated DNA using a
pore

DNA Molecules translocated

88bp DNA Unmethylated
2 999 2 }
T &3 ) ’

88bp DNA Hemimethylated
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88bp DNA Methylated
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- Fully Methylated
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Mirsaidov, et al. Biophys J. (2009)
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For 1.8nm pore
Methylation – stiffer DNA – an increase in stiffness 
<r2>=0.29nm (methylated)  compared to 
<r2>=0.49nm (unmethylated DNA)







Nanopore: Methylation

Cytosine 5—methy|cytosine » Differences between methylated and
unmethylated cytosine have been detected

using nanopores.

» Methylation state can be called with 90%
accuracy.

 We have implemented a classifier for mC

¢ on using Oxford Nanopore signals.
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Generation of methylated Samples

100% =
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75% =

* To generated methylated samples, we treat unmethylated
DNA (lambda, dam-/dcm- E. Coli, PCR product) with M. Sssl
methyltransferase

« We confirm the CG specific methylation using lllumina bisulfite
sequencing of the sample — pictured right is methylation in
different contexts E. Coli dataset treated with M. Sssl (red)
versus untreated (green)

50% =

25% =

0% =

CGs CHG CHH
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Nanopore Library Prep o el ..
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» Library prep is very similar to methods for short-read sequencing

» For DNA shearing we used Covaris gTubes

» After end-repair and A-tailing, leader adapter with motor protein is ligated

* MinlON arrays 512 channels (with 4 pores possible per channel) (shown bottom left from running
il:r’ software); dark green pores are sequencing, light green available, other colors inactive.




N ano p ore: M et h y| ated Er ror Simpson, Workman, et al. Nature Methods (2017)
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*\WWe sequenced 1.00 =—
samples with either
Sssl or no treatment.

*Notably, mismatch
error rate is higher on
methylated samples
than unmethylated,
though indel rate
seems mostly
unchanged

*At CG locations,
there is not a clear
alternative
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Emission Probabilities

We measured distributions of current
for k-mers from E. Coli M.Sssl treated
(methylated; green) and untreated
(unmethylated; red) samples on two
different sets of pores - R7.3 and R9
flowcells.

Boxplots of AGGTCG and TCGAGT k-
mers which both contain CGs show
significant differences in current in
some cases (AGGTCG R7.3) and little
to none in others (TCGAGT R7.3)

R9 current distribution seem wider in
both cases, but gives better
discrimination in TCGAGT.

Average Event Current (pA)
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Distance of methylation effect

We looked at the difference in current
levels dependent on the position of the
methylated base — plotted are the current
differences for R7.3(blue) and R9
pores(orange).

Signal seems again stronger but more
variable for R9 pores than R7.3
Methylation can either reduce current or
Increase it.

Some positions are more sensitive to
methylation than others.

Simpson, Workman, Nature Methods (2017)

Methylated-Unmethylated Difference (pA)
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Nanopore: nanopolish methyltrain

0
« Multiple bases influence the current & oo 5 g
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Nanopolish tools

Consensus Calling
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Methylation Detection

qgithub.com/jts/nanopolish

Reference-based SNP Calling

chr2i
chrzg
chrzg
chrzg
chrzg
chrzg
chrzg

Read Phasing

44921212
440521404
44822637
44834236
44960481
448963260
44963607

A
A
C
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165.9
381.3
354.0
24.3
39.1
99.1
207.3

1/1
1/1
1/1
Bs1
Bas1
Bas1
/1
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http://github.com/jts/nanopolish

Nanopolish SNP Calling and Genotyping

Input: pairs of Dy v T L
haplotypes
D, pni e W e B B
| hidden Markov| :23(2) . o
C model
-350
C output:
C genotype call
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Human Genotyping Results

Platinum (lllumina) Genotype
0/0 0N 1/1
0/0 727598 1730 75
Nanopolish (g4 3217 29096 914
Genotype
1/1 601 49 21718

Genotype accuracy at all sites: 99.2%
Genotype accuracy at variable sites: 94.8%

Jain et al bioRxiv 128835
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Solution-phase Hybridization Capture
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Target DNA W@
0000000000008000 XOOOOOOOk 00000000
Biotinylated RNA probe @mm@m *
1000000 003900.000000.
Adaptor mmm@% W olution-phase Hybridization
Streptavidin-coated Genomic DNA Wm ‘/{/t\/\;/\\/l-lyv t
magnetic bead Adaptor-tagged DNA
S AYACAVAYRINAYL "7 YoV,
OSSR AN oo
XOOCOO0OK 10000000 fum N\&/\’ &
W PCR Amplification Magnetic Bead Separation
100000000
4% Agilent Technologies
Enriched DNA Library S
Agilent SureSelectXT Targeted Sequencing System
* ~90 bps biotinylated RNA probes complementary to target sequence
» Biotin-streptavidin interaction to enrich for the targeted region
* Optimization for long-reads : > 2 kb
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Targeted Sequencing Performance

b Control : NA12878 lymphoblast 50
P Sample : PDAC from Eshleman o
o 40
lab o
r lllumina short-read targeted é 30 1
seqguencing for comparison = -
S 204
> 300-fold enrichment g
10 -
P > 20X average coverage Legend =
. Nanopore
b Agilent App Note: = lllumina 0+
https://qoo.gl/8V2Fei Capture Region
Total yield
(reads) On-target
lllumina NA12878 4.4m 3.7m
Nanopore
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Read length vs. number of reads corresponding to the length
Theoretical distribution based on bioanalyzer	
Comparison with observed distribution
An example plot of reads and probes that fall within them
Table of target efficiency?

https://goo.gl/8V2Fei

Single Nucleotide Variation Detection

NA12878 | I
True SNVs (6;0) [ [ [ ] N Reference SNV | rlom. I il ' |
llumina (6;0) [ [ ] O ] : ; E
Pre-Nanopolish (4;3) ] ) | ] E :
Post-Nanopolish (6;:2) [F] [} ] ] [ Read-level = :

_ 1 Detected SNVs
Mismatch

Frequenacy 5.

JMWW M y VWM‘.LW I NMMMMWW

21.008,000 21,008,500 21,009,000
chr9 Coordinates

_!’_i_F_—

0

-
— —— —_—— —— -— ——— -_—

lllumina  Pre-polish Post-polish

Phased SNV analysis is possible with Avg.

coverage from targeted sequencing Coverage 113 27 27
Correct 1133 2485 947
Total 1211 4138 1017
Precision 94% 60% 93%

1‘;.3“, Sensitivity 32% 69% 26%
|'} Number of True SNVs: 3587 (Eberle,et al. bioRxiv, 2016) 20
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NA12878 Methylation
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Simpson, Workman, Nature Methods (2017)

« NA12878 (lymphoblast) gDNA: lllumina WGBS on X-axis (24X coverage) (SRA: GSM1002650) vs.
R7.3 (0.02X) or R9 (0.13X) nanopore sequencing.
3

Y Correlation of 0.83 (R7.3) and 0.84 (R9) — most gene promoters unmethylated




Nanopollsh Methylation
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Jain et al bioRxiv 128835
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Binned Methylation vs. Transcription Start Sites

100

% Methylated
| T

N
(0]
]

-1kb 0 kb 2kb
Binned distance to TSS

-3kb -2kb

3kb

On human genomic samples:

Binning methylation levels vs. distance to TSS sites,
compared to bisulfite data (NA12878).

We also generated completely methylated (M.Sssl
treated; ~95% meth) and unmethylated — used to
generate the ROC curve (right)

R7.3 91% accurate at 68% of sites

R9 94% accurate at 77% of sites

Treatment
« PCR

s PCR+M.Sssl
= bisulfite

+ natural

Pore
R7.3
R9

True positive rate

1.00
0.75
0.50
0.25
Pore
R7.3
0.00 R9
[ [ | | |
0.00 025 050 0.75 1.00
False positive rate

Simpson, Workman, Nature Methods (2017)
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Cancer-Normal Comparison
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Long reads measure phased methylation
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Haplotype-Phased Methylation

nanopolish has experimental support for phasing methylation patterns

298 bp

58,841,600 bp 53,841,700 bp 53,841,300 bp
| | | |

this haplotype is highly methylated



Haplotype-Phased Methylation

nanopolish has experimental support for phasing methylation patterns

298 bp

58,841,600 bp 53,841,700 bp 53,841,300 bp
| | | |

this haplotype isn'’t



Mitochondrial methylation/clustering
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Preliminary data clustering mitochondrial CG methylation from MCF10A
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Future Work

Expand to non-CpG methylation
Expand to non 5-methylcytosine
methylation

e Strong signal for N6-

methyladenine

Apply to clinical samples
Exogenous labeling of DNA and
readout
Exploring replacing the core
hidden Markov model with a
neural network to capture more
of the signal

Average Event Current (pA)

80 —

75 —

70 —
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60 —

95 —

Unmethylated
Methylated

AGATCG
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