NHGRI Advanced DNA Sequencing Technology Development Grantee Meeting Boston, MA; May 2017

Detecting nucleotide modifications using nanopore sequencing

Winston Timp Department of Biomedical Engineering Johns Hopkins University

Epigenetics: Historical

- The *historical* definition of epigenetics, by Waddington, is how genotype interacts with the environment to create phenotype. The analogy is the rolling ball in the image to the right – the genotype has set up the hills, environment nudges the ball into one valley or another, then the ball is, to mix metaphor, lineage committed.
- Which valley the ball rolls into is not predetermined, but a stochastic behavior.

Epigenetics: Modern

- Modern Definition of epigenetics involves heritable changes other than genetic sequence, e.g., positive feedback, high order structure, chromatin organization, histone modifications, DNA methylation.
- An analogy to a computer system:
 - DNA Sequence = Hardware
 - User input = Environment
 - Systems Biology = Running programs
 - Epigenetics = RAM

Single Read Methylation: Distribution

- We performed hybridization capture, then Illumina bisulfite sequencing on 6 paired colon cancer and normal samples.
- We then examined methylation patterns *within reads* and looked at the distribution in normal vs. cancer samples.
- Colors in the stacked bar graph represent different sequenced samples.
- Areas are clusters in regions which show significantly different methylation levels (ttest).

4

Single Read Methylation: Distribution

- We performed hybridization capture, then Illumina bisulfite sequencing on 6 paired colon cancer and normal samples.
- We then examined methylation patterns *within reads* and looked at the distribution in normal vs. cancer samples.
- Colors in the stacked bar graph represent different sequenced samples.
- Areas are clusters in regions which show significantly different methylation levels (ttest).

Single Read Methylation: Distribution

- We performed hybridization capture, then Illumina bisulfite sequencing on 6 paired colon cancer and normal samples.
- We then examined methylation patterns *within reads* and looked at the distribution in normal vs. cancer samples.
- Colors in the stacked bar graph represent different sequenced samples.
- Areas are clusters in regions which show significantly different methylation levels (ttest).

Nanopore: Methylation

- Differences between methylated and unmethylated cytosine have been detected using nanopores.
- Methylation state can be called with 90% accuracy.
- We have implemented a classifier for mC on using Oxford Nanopore signals.

Generation of methylated Samples

Nanopore Library Prep

- Library prep is very similar to methods for short-read sequencing
- For DNA shearing we used Covaris gTubes
- After end-repair and A-tailing, leader adapter with motor protein is ligated •
- MinION arrays 512 channels (with 4 pores possible per channel) (shown bottom left from running software); dark green pores are sequencing, light green available, other colors inactive.

Emission Probabilities

- We measured distributions of current for k-mers from *E. Coli* M.Sssl treated (methylated; green) and untreated (unmethylated; red) samples on two different sets of pores - R7.3 and R9 flowcells.
- Boxplots of AGGTCG and TCGAGT kmers which both contain CGs show significant differences in current in some cases (AGGTCG R7.3) and little to none in others (TCGAGT R7.3)
- R9 current distribution seem wider in both cases, but gives better discrimination in TCGAGT.

Distance of methylation effect

- We looked at the difference in current levels dependent on the position of the methylated base plotted are the current differences for R7.3(blue) and R9 pores(orange).
- Signal seems again stronger but more variable for R9 pores than R7.3
- Methylation can either reduce current or increase it.
- Some positions are more sensitive to methylation than others.

Nanopore: nanopolish methyltrain

80

75

55

50

Current (pA)

- Multiple bases influence the current passing through the pore.
- Current basecallers use a neuralnetwork based methodology to call bases.
- We currently use a HMM based classifier to call methylation
- With *nanopolish* we can call the probability:

 $\frac{P(\mathcal{D}|S_m)}{P(\mathcal{D}|S_r)}$

- Where *S_m* is the probability methylated for a given observable *D* and *S_r* the probability unmethylated
- We then take the log of this likelihood ratio.

Nanopolish tools

github.com/jts/nanopolish

Consensus Calling

Methylation Detection

Reference-based SNP Calling

chr20	44921212	т	С	165.9	1/1
chr20	44921404	Α	Т	381.3	1/1
chr20	44922637	Α	C	354.0	1/1
chr20	44934236	G	Α	24.3	0/1
chr20	44960481	С	Т	39.1	0/1
chr20	44963260	G	Α	99.1	0/1
chr20	44963607	т	С	207.3	0/1

Read Phasing

TAGAAGATATCATGTATAGTACGAT TAGAAGATATCATG TAGCAGATATCATGTATATTACGAT CATGTATATTACGAT

Nanopolish SNP Calling and Genotyping

Human Genotyping Results

		Platinum (Illumina) Genotype			
		0/0	0/1	1/1	
	0/0	727598	1730	75	
Nanopolish Genotype	0/1	3217	29096	914	
	1/1	601	49	21718	

Genotype accuracy at all sites: 99.2% Genotype accuracy at variable sites: 94.8%

Solution-phase Hybridization Capture

Agilent SureSelectXT Targeted Sequencing System

- ~90 bps biotinylated RNA probes complementary to target sequence
- Biotin-streptavidin interaction to enrich for the targeted region
- Optimization for long-reads : > 2 kb

Targeted Sequencing Performance

- Control : NA12878 lymphoblast
- Sample : PDAC from Eshleman lab

Nanopore

NA12878

- Illumina short-read targeted sequencing for comparison
- > 300-fold enrichment
- > 20X average coverage
- Agilent App Note: https://goo.gl/8V2Fei

SMAD4 Capture Region

Single Nucleotide Variation Detection

Phased SNV analysis is possible with coverage from targeted sequencing

	Illumina	Pre-polish	Post-polish
Avg.			
Coverage	113	27	27
Correct	1133	2485	947
Total	1211	4138	1017
Precision	94%	60%	93%
Sensitivity	32%	69%	26%

Number of True SNVs: 3587(Eberle, et al. bioRxiv, 2016)

NA12878 Methylation

- NA12878 (lymphoblast) gDNA: Illumina WGBS on X-axis (24X coverage) (SRA: GSM1002650) vs.
 R7.3 (0.02X) or R9 (0.13X) nanopore sequencing.
 - Correlation of 0.83 (R7.3) and 0.84 (R9) most gene promoters unmethylated

Nanopolish Methylation

N = 754675 r = 0.767

22

Binned Methylation vs. Transcription Start Sites

Cancer-Normal Comparison

- Reduced representation method:12.5Mb of the genome (3.5-6kb size selection)
- We sequenced this fraction on nanopore and bisulfite Illumina seq
- Long reads measure *phased* methylation

Simpson, Workman, Nature Methods (2017)

Haplotype-Phased Methylation

this haplotype is highly methylated

Haplotype-Phased Methylation

this haplotype isn't

Mitochondrial methylation/clustering

Future Work

- Expand to non-CpG methylation
- Expand to non 5-methylcytosine methylation
 - Strong signal for N6methyladenine
- Apply to clinical samples
- Exogenous labeling of DNA and readout
- Exploring replacing the core hidden Markov model with a neural network to capture more of the signal

Acknowledgments

- Timp Lab Johns Hopkins University
- Winston Timp, PhD
- Rachael Workman, MS
- Stephanie Hao, MS
- Yunfan Fan
- Isac Lee
- Amy Vandiver, MD, PhD
- Eshleman Lab Johns Hopkins School of Medicine
- James Eshleman, MD, PhD
- Alexis Norris, PhD

- Ontario Institute for Cancer Research
- Jared Simpson, PhD
- P.C. Zuzarte, PhD
- Matei David, PhD
- L. J. Dursi, PhD

Agilent Technologies

Agilent Technologies Josh Wang, PhD Jonathan Levine, PhD

National Human Genome Research Institute 1R01HG009190-01A1

