

Direct RNA sequencing of human transcripts using the Oxford Nanopore sequencing platform

For the Nanopore RNA Consortia: Winston Timp Department of Biomedical Engineering Johns Hopkins University

Revolutions in Genomics: Single Molecule Sequencing

- First patented back in 1995, commercialized in 2014
- No theoretical upper limit to sequencing read length, practical limit only in delivering DNA to the pore intact
- Palm sized sequencer
- Sequencing output 5-10Gb

Disclosure: Timp has two patents (US 2011/0226623 A1; US2012/0040343 A1) licensed to ONT

Earliest nanopore experiments analyzed RNA

Building Transcriptomes: Native RNA sequencing

- Analyse isoforms directly
- Poly-A length assessment
- RNA modifications
- PCR-free system

Nanopore RNA consortium

Six participating Universities

- Johns Hopkins University
- University of Birmingham
- University of California Santa Cruz
- University of British Columbia
- Ontario Institute for Cancer Research
- University of Nottingham
- Isolated poly-A RNA from GM12878 CEPH cell line, sequenced direct RNA and amplified cDNA
- Spiked-in synthetic RNA molecules
 - Lexogen SIRV Set 3 (ERCC + 69 SIRV Isoforms)

How much data did we generate?

- <u>≈13 million</u> Direct RNA sequences, 30 flow cells
- <u>>24 million cDNA sequences</u>, 12 flow cells
- https://github.com/nanopore-wgs-consortium/NA12878/

Voltage tuning improves throughput

Long read RNA can now be sequenced directly with ONT

Reverse transcription (optional)

Sequencing adapter ligation

Building Transcriptomes: Direct RNA sequencing

- Long reads allow us to see the entire VEGF gene
- Different isoforms clearly visible
- We can even see transcripts in the process of splicing (introns kept in)

RefSed gene predictions from NCBI

dRNA reads show good alignment to GENCODE reference

Alignment to GENCODE V27 dataset performed using Minimap2: https://github.com/lh3/minimap2

Large number of annotated genes identified for dRNA

Unique transcripts detected approaches "saturation"

- How important is capturing "every transcript"?
- After 5M reads we already start to see diminishing returns

12

Correlation in gene-level abundance between RNA vs. ONT cDNA, Illumina

ENCODE Illumina dataset, Wold Lab: https://www.encodeproject.org/experiments/ENCSR000AEG/ 1

SIRV gene level quantification tracks expected input well

Expected Observed

Quantification more complicated at isoform level

Isoform level quantification complicated by read error, multi-mapping, 5' degradation

Ionic current dwell time can be used to estimate poly-A tail lengths

Predicting poly-A sequence length becomes tractable when consistent structural regions of dRNA reads can be identified and separated

PolyA estimator (under development): https://github.com/jts/nanopolish/tree/polya_estimator

Poly-A tail lengths for GM12878 and SIRVs consistent with expected

Poly-A tail lengths in humans expected 30-150+ nt

SIRV polyA tails expected 20-30nt

Building Transcriptomes: Direct RNA Sequencing

- We can use this to understand RNA modifications – the epitranscriptome
- Other methods are challenging either inefficient, or lack resolution, and always only one modification at a time

Detection of RNA modifications with modIVT

- IVT based RNA synthesis allows incoproation of labeled nucleotides
- All or none reaction right now, T7 has a strong preference for the unmodified nulceotides, making mixtures hard

Detection of RNA modifications with modIVT

- From Luciferase we can already see strong signal depending on context
- Using nanopolish eventalign, we can extract the distribution of current values along the RNA strand

Conclusions and Future Directions

- Nanopore direct RNA sequencing is a promising technology for the simultaneous assessment of isoform structure and features of interest
- Unique information in this dataset can be used to improve human reference transcriptome
- Poly-A tail length measurement may reveal new insights into its function
- RNA modification training expansion to include simultaneous detection of multiple mods

Acknowledgements

Santa Cruz Mark Akeson Hugh Olsen **Benedict Paten Angela Brooks** Miten Jain

Columbia Terry Snutch

ONT

Daniel Garalde Daniel Jachimowicz Andy Heron Posomary Dokos