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Nanopore: Single Molecule Sequencing

» Oxford Nanopore Technologies, CsgG
biological pore

* No theoretical upper limit to sequencing read
length, practical limit only in delivering DNA
to the pore intact

« Palm sized sequencer
* Predicted sequencing output 5-10Gb
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Oxford Nanopore Technologies

Protein nanopores on a synthetic polymer
——  Multiple base-pairs at a time (“k-mers”)
i.y « Characteristic current signature is converted to nucleotide sequences




Nanopore Library Prep o el ..
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» Library prep is very similar to methods for short-read sequencing

* For DNA shearing we use Covaris gTubes or Diagenode Megaruptor

» After end-repair and A-tailing, leader adapter with motor protein is ligated

* MinlON arrays 512 channels (with 4 pores possible per channel) (shown bottom left from running
il:r’ software); dark green pores are sequencing, light green available, other colors inactive.




Improving Read Lengths: Size selection

—no size selection
—sheared (8kb)

—nanobind size select (>4kb) : D
— bluepippin size selection (>20kb) - ggn(ZEg;d glslﬂ(ezgll(%gm
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Yield 1.71Gb 10.1Gb  3.57Gb 3.65Gb
N50 17.3kb  6.6kb 15.7kb 19.0kb
Median 1.2kb 5.1kb 6.8kb 4.3kb
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Improving Read Lengths: Rapid kit RADO04

15 minute protocol
Transposome Unsheared gDNA
Yield:

3Gb from 150K reads ' N

0.89Gb from >50kb reads l
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Nanopore Sequencing Workflow

Alignment
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Four steps to generating usable data with nanopore sequencing AAGCATG
Base-calling : the process of converting raw signal into nucleotide canu
sequences
* Nanopolish : uses alignment and current signal to improve base-calls ,




» Multiple bases influence the current
passing through the pore.

* Through simulation with Brownian
Dynamics, we calculated the
contribution from triplets of DNAin a
solid-state nanopore - 64 current
levels.

» Not all of these different currents are
distinguishable

Current Signal K-mers

ACGTA
Vo P CGTAC
TE’-\ TAAC

MinKNOW

—

Sequence

ACGCTAA <

albacore

Current (pA)
250 300 350 400
| 1 1 ]

200
1

Comer and Aksimentiev J. of Phys Chem C 116(5) 3376-3393 (2012)

Alignment
ACGTACG
[
ACGTAA

minimap2

Assembly
ACGTAA
AAGCATG
canu



Alignment

ACGTACG
(NERAE

= = = Current Signal K-mers Sequence n; .Tm
Prior Information for Decoding |
2/\?% 1 me& —» ACGTAA N
o Assembly
minION MinKNOW albacore | ncoTan
AAGCATG
canu
) —TCT
| — TCC
— TCG
> | — TCA
o
= |
c
7]
)]
>
=
=
©
Q
O
|
a
|
|
T T T T T T | -
320325 330 335 340 345 350 320 325 330 335 340 345 350
Current (pA) Current (pA)

correct call of TCG

« With no prior information, a given current value may not be called correctly (333pA would be called as GGG)
» |f we know the previous triplet, the next triplet is well defined, leaving only four possibilities, resulting in the
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Nanopore HMM basecalling

« By using a sequence of observables and
maximizing the total joint probability given
below, we find the sequence of states.

e This is done using the Viterbi algorithm —
which grows, finding the most likely path
for each step, saving the probabilities, to
avoid recalculation.

» 1stgeneration basecallers from Oxford
used a HMM for basecalling similar to the
one detailed in our Biophysical paper | = 00 smemeeesseebeseeeeeeeencieiiiiobeioee

« Transistion probablility matrix for oxford
seems to allow for a 0, 1 (most common),
2, or 5 (reset) move.

* We think that Oxford trained its

Hidden Markov Model States
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Basecalling shifting to RNN :

Recently (over the past year) there has
been a shift to neural network based
basecalling

A recurrent neural network is still one with
memory, that has a dependence on past
computations

Specifically two layers of Bidirectional Long
Short Term Memory (BLSTM)

These still require the same “training” data
to learn what current distributions
correspond to which k-mers — and the
results are still k-mer based, as multiple
bases still influence the current.

Distributions learned from
squiggle training data

Bidirectional
information flow

(BLSTM layer)
Processing layer
Bidirectional

information flow
(BLSTM layer)

Multi-base prediction

Decode to sequence /

Oxford Nanopore
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Nanopore Sequencing in Epigenomics
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» To generate methylated samples, we treat
unmethylated DNA (PCR amplified E. Coli gDNA)
with M. Sssl| methyltransferase 0.0 : i .
« Distributions of observed current for AGGTCG 55 60 63
demonstrate the type of signal between methylated Nanopore current distribution (pA)
and unmethylated k-mers PCA  PCRsMSssl

i.y Simpson et. al Nature Methods 2017 12




Nanopore: nanopolish methyltrain

Current Signal K-mers Seqguence Alignment

] _ ACGTACG
ACGTA EEREEY

Q.6 — CGIAC — ACGTAAG — ACGTAA
AP % AA
Yy O T —

Nanopolish

AC TAz
P(D|Sm)

P(DI|Sy)
« Where S, is the probability methylated for a given observable D and S, the probability unmethylated)
* We then take the log of this likelihood ratio, and threshold for >2.5 as methylated; <2.5 as unmethylated

» With nanopolish we can call the probability:
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Nanopolish Methylation
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R9 calculates methylation 94% accurate at 77% of sites
NA12878 data shows .895 correlation with bisulfite
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Jain et al Nat Biotech (2018)
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Cancer-Normal Comparison
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Haplotype-Phased Methylation

nanopolish has experimental support for phasing methylation patterns

298 bp

58,841,600 bp 53,841,700 bp 53,841,300 bp
| | | |

this haplotype is highly methylated



Haplotype-Phased Methylation

nanopolish has experimental support for phasing methylation patterns

298 bp

58,841,600 bp 53,841,700 bp 53,841,300 bp
| | | |

this haplotype isn'’t



Cas9 Enrichment around target

----------------------------

O T

Cas9 gRNA -
S

TERT 1kb

Capture around the hTERT promoter, region with aberrant methylation in many cancers
gDNA source from a BCPAP thyroid cancer cell line (poorly differentiated papillary thyroid carcinoma
Hard to amplify with bisulfite PCR because of high CG-density, required many iterations of primer design

18



Methylation compare of capture/bisulfite

illumina
g [+ e Nanopore
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CpG Position (Chromosomal Coordinates)

Preliminary data indicates methylation patterns largely concordant between bisulfite and nanopore
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NanoNOMe: Chromatin Accessibility with Nanopore

« NOMe-seq : Nucleosome Ocupancy and Methylome sequencing (ely et ai. enome res. 2012)
Simultaneously measures DNA methylation (CpG) and nucleosome occupancy (GpC)

g = IR AR

GpC MTase GpC MTase *

:zz:::::*m SRR A




Nano-NOMe

Nucleosomes? —>

Methylation

Chromatin
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|
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chr12 Coordinate (kb)

|
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Call type

Methylated
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Accessible
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Read-level analysis of nucleosome occupancy along with DNA methylation

« MDA-MB-231 GAPDH : house-keeping gene

o promoter : Unmethylated / Open chromatin



Nano-NOMe - Results

HCG m
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Kelly, et. al. Genome Res. 2012

 Genome-wide cumulative methylation profile shows comparable
chromatin states in CTCF motif
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Nano-NOMe - Results

Heatmap of methylation reads that
span 4kb region surrounding any
CTCF site

o .o NUcleosome positioning Is

visible at single-read resolution

1 - GpC Methylatio

Accessible

-2000 -1000 0 1000 2000
Binned distance to CTCF motifs
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Nano-NOMe - Results

2000 -1000 0 1000 2000
Binned distance to CTCF motifs

Methylated

CpG Methylation

Unmethylated

Heatmap of methylation reads that
span 4kb region surrounding any
CTCF site

 Nucleosome positioning is
visible at single-read resolution

* Methylation pattern is also
visible

24



Multiple Modifications
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Current distributions for:
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Current Level (pA)

w/ Alexey Fomenkov (NEB) 25



4-methylcytosine and N6-methyladenine
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Initial work using the methyltransferases from NEB demonstrates that we can see signal
from several different methylation marks (4-mC, 5-mC, N6-mA)

w/ Alexey Fomenkov (NEB) 26




NA12878 RNA Consortium

* 13M dRNA reads (30 flowcells); 24M cDNA reads (12 flowcells)
* Assess ability to sequence full-length isoforms
* Quantify bias introduced by RT-PCR
* Poly-A tail length

° RNA modifications?
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Direct RNA Sequencing

. 6 5 5 m
« We can use this to understand WW

RNA modifications — the

epitranscriptome g
« Other methods are challenging — " <f; o $XJ e <fJ o, LA,
either inefficient, or lack — 1 Iy —
resolution, and always Only ONe  N52'-O-dimethyladenosine (m°Am) N®-methyladenosine (m°A)  Inosine (1) 5-methylcytidine (M°C)
modification at a time y
N'-methyladenosine (m'A) Pseudz:ridi:e (V) 5-hydroxylmethylcytidine (hm*C)

Li, Xiong, Yi, Nature Methods (2017)




Detection of RNA modifications with modIVT

e IVT based RNA synthesis allows In vitro transcription construct
Incorporation of labeled Luciferase
nucleotides T7 Promoter

 All or none reaction right now, T7
has a strong preference for the mA + A+t
unmodified nucleotides, making C+U+G /7 gm \ CTU+G

polymerase

mixtures hard

l A- tailing reaction l

ARRPA AARAA

100% mA Proceed to sequencing 0% mA
library prep

In vitro
transcription

RNA product

Poly-A RNA

l"v NEB HiScribe™ T7 High Yield RNA Synthesis kit 29



Detection of RNA modifications with modIVT

 From Luciferase we can already
see strong signal depending on
context

« Using nanopolish eventalign, we
can extract the distribution of
current values along the RNA
strand
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Exploring the dRNA for m6A

GGACT

« Eukaryotic elongation factor
2 has a METTL3 motif
GGACU (m6A writer) in the
MRNA sequence

 Has been shown to have
MO6A via IP-seq methods
(Meyer et al Cell 2012) dataset

« Compared dRNA data with g Diract FAINA
IVT'd dRNA signal

.05 -

density

Ir vitro tranacription

.03 7

L1005

100 110 120 130 140
event level mean

w Unpublished, preliminary data - NA12878 RNA Consortium 31




Summary

Nanopore technology is full of potential for sequencing, but always choose the right tool for the right job.

Often multiple approaches with complementary data yield the best results.

Multiple bases affect the electrical signal from nanopores; rather than a problem, this can be an
advantage, as each base is interrogated multiple times.

Modifications to the primary DNA sequence (e.g. cytosine methylation) can be detected directly using
nanopores

Exogenous labeling allows simultaneous detection of chromatin and methylation state using nanopore
sequencing

Preliminary data from direct RNA sequencing suggests we can also see RNA maodifications
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