Long-Read Sequencing Workshop Jackson Laboratory for Genomic Medicine Farmington, CT; April 2018

Detecting Base Modifications Using Nanopore Sequencing

Winston Timp Department of Biomedical Engineering Johns Hopkins University

Nanopore: Single Molecule Sequencing

- Oxford Nanopore Technologies, CsgG biological pore
- No theoretical upper limit to sequencing read length, practical limit only in delivering DNA to the pore intact
- Palm sized sequencer
- Predicted sequencing output 5-10Gb

ATCGATCGATAGTAT TAGATACGACTAGC ATCAG

Disclosure: Timp has two patents (US 2011/0226623 A1; US2012/0040343 A1) licensed to ONT

Sequencing Operation

Oxford Nanopore Technologies

- Protein nanopores on a synthetic polymer
- Multiple base-pairs at a time ("k-mers")
- Characteristic current signature is converted to nucleotide sequences

Nanopore Library Prep

- Library prep is very similar to methods for short-read sequencing
- For DNA shearing we use Covaris gTubes or Diagenode Megaruptor
- After end-repair and A-tailing, leader adapter with motor protein is ligated •
- MinION arrays 512 channels (with 4 pores possible per channel) (shown bottom left from running software); dark green pores are sequencing, light green available, other colors inactive.

Improving Read Lengths: Size selection

	None	Sheared	Nanobind SS (4kb)	Blue Pippin SS (20kb)
Reads	353k	2060k	400k	435k
Yield	1.71Gb	10.1Gb	3.57Gb	3.65Gb
N50	17.3kb	6.6kb	15.7kb	19.0kb
Median	1.2kb	5.1kb	6.8kb	4.3kb

Read length and yield require some optimization and trade-offs

Improving Read Lengths: Rapid kit RAD004

15 minute protocol

Nanopore Sequencing Workflow

- Nanopolish : uses alignment and current signal to improve base-calls

Alignment

Problems with Nanopore basecalling

- Multiple bases influence the current passing through the pore.
- Through simulation with Brownian Dynamics, we calculated the contribution from triplets of DNA in a solid-state nanopore - 64 current levels.
- Not all of these different currents are distinguishable

Comer and Aksimentiev J. of Phys Chem C 116(5) 3376-3393 (2012)

Prior Information for Decoding

- With no prior information, a given current value may not be called correctly (333pA would be called as GGG)
- If we know the previous triplet, the next triplet is well defined, leaving only four possibilities, resulting in the correct call of TCG

Nanopore HMM basecalling

- By using a sequence of observables and maximizing the total joint probability given below, we find the sequence of states.
- This is done using the Viterbi algorithm which grows, finding the most likely path for each step, saving the probabilities, to avoid recalculation.
- 1st generation basecallers from Oxford used a HMM for basecalling similar to the one detailed in our Biophysical paper
- Transistion probablility matrix for oxford seems to allow for a 0, 1 (most common), 2, or 5 (reset) move.
- We think that Oxford trained its basecalling model on unmethylated lambda

Basecalling shifting to RNN

- Recently (over the past year) there has been a shift to neural network based basecalling
- A recurrent neural network is still one with memory, that has a dependence on past computations
- Specifically two layers of Bidirectional Long Short Term Memory (BLSTM)
- These still require the same "training" data to learn what current distributions correspond to which k-mers and the results are still k-mer based, as multiple bases still influence the current.

Basecalling - RNN

Distributions learned from squiggle training data

> Bidirectional information flow (BLSTM layer)

Processing layer

Bidirectional information flow (BLSTM layer)

Multi-base prediction

Decode to sequence

Nanopore: nanopolish methyltrain

• Where S_m is the probability methylated for a given observable D and S_r the probability unmethylated)

• We then take the log of this likelihood ratio, and threshold for >2.5 as methylated; <2.5 as unmethylated

Nanopolish Methylation

N = 658621 r = 0.895

Cancer-Normal Comparison

- Reduced representation method:12.5Mb of the genome (3.5-6kb size selection)
- We sequenced this fraction on nanopore and bisulfite Illumina seq
- Long reads measure *phased* methylation

Simpson, Workman, Nature Methods (2017)

Haplotype-Phased Methylation

this haplotype is highly methylated

Haplotype-Phased Methylation

this haplotype isn't

Cas9 Enrichment around target

- Capture around the hTERT promoter, region with aberrant methylation in many cancers
- gDNA source from a BCPAP thyroid cancer cell line (poorly differentiated papillary thyroid carcinoma
- Hard to amplify with bisulfite PCR because of high CG-density, required many iterations of primer design

Methylation compare of capture/bisulfite

Preliminary data indicates methylation patterns largely concordant between bisulfite and nanopore

NanoNOMe: Chromatin Accessibility with Nanopore

• NOMe-seq : Nucleosome Ocupancy and Methylome sequencing (Kelly et. al. Genome Res. 2012) Simultaneously measures DNA methylation (CpG) and nucleosome occupancy (GpC)

Read-level analysis of nucleosome occupancy along with DNA methylation

- MDA-MB-231 GAPDH : house-keeping gene
- promoter : Unmethylated / Open chromatin

Nano-NOMe - Results

 Genome-wide cumulative methylation profile shows comparable chromatin states in CTCF motif

Nano-NOMe - Results

- GpC Methylation

Heatmap of methylation reads that span 4kb region surrounding any CTCF site

 Nucleosome positioning is visible at single-read resolution

Nano-NOMe - Results

CpG Methylation

Heatmap of methylation reads that span 4kb region surrounding any CTCF site

- Nucleosome positioning is visible at single-read resolution
- Methylation pattern is also visible

4-methylcytosine and N6-methyladenine

Initial work using the methyltransferases from NEB demonstrates that we can see signal from several different methylation marks (4-mC, 5-mC, N6-mA)

NA12878 RNA Consortium

- 13M dRNA reads (30 flowcells); 24M cDNA reads (12 flowcells)
 - Assess ability to sequence full-length isoforms
 - Quantify bias introduced by RT-PCR
 - Poly-A tail length
 - RNA modifications?

27

Direct RNA Sequencing

- We can use this to understand RNA modifications – the epitranscriptome
- Other methods are challenging either inefficient, or lack resolution, and always only one modification at a time

Detection of RNA modifications with modIVT

- IVT based RNA synthesis allows incorporation of labeled nucleotides
- All or none reaction right now, T7 has a strong preference for the unmodified nucleotides, making mixtures hard

Detection of RNA modifications with modIVT

- From Luciferase we can already see strong signal depending on context
- Using nanopolish eventalign, we can extract the distribution of current values along the RNA strand

Exploring the dRNA for m6A

- Eukaryotic elongation factor 2 has a METTL3 motif GGACU (m6A writer) in the mRNA sequence
- Has been shown to have m6A via IP-seq methods (Meyer et al Cell 2012)
- Compared dRNA data with IVT'd dRNA signal

Summary

- Nanopore technology is full of potential for sequencing, but always choose the right tool for the right job. Often multiple approaches with complementary data yield the best results.
- Multiple bases affect the electrical signal from nanopores; rather than a problem, this can be an advantage, as each base is interrogated multiple times.
- Modifications to the primary DNA sequence (e.g. cytosine methylation) can be detected directly using nanopores
- Exogenous labeling allows simultaneous detection of chromatin and methylation state using nanopore sequencing
- Preliminary data from direct RNA sequencing suggests we can also see *RNA* modifications

Acknowledgments

of ENGINEERING

- Timp Lab JHU
- Winston Timp, PhD
- Rachael Workman, MS
- Norah Sadowski
- Timothy Gilpatrick
- Yunfan Fan
- Isac Lee

- Ontario Institute for Cancer Research
- Jared Simpson, PhD
- P.C. Zuzarte, PhD
- Matei David, PhD
- L. J. Dursi, PhD

Alexey Fomenkov, PhD

Redwood Genome Project (Neale)

National Human Genome Research Institute 1R01HG009190-01A1

Nanopore RNA Consortia

- UCSC (Akeson, Brooks)
- UBC (Snutch, Tyson)
- OICR (Simpson)
- JHU (Timp)
- Nottingham (Loose)
- Birmingham (Loman)

