

Cas9 Targeted Enrichment for Nanopore Profiling of Methylation at Known Cancer Drivers

Timothy Gilpatrick Lab of Winston Timp

JOHNS HOPKINS

- 5-10 Gb from a single MinION Flow Cell
- 3Gb in human genome

Goals:

Enrich for specific loci using CRISPR/Cas9–

Higher coverage at selected loci from a single flow cell

Approach

- DNA/RNP complex assembly
- Complex capture with magnetic beads

Performance

- Single bacterial and mixed microbial populations
- Human cell lines

Methylation Analysis

- Compare with illumina data
- Look at allele specific methylation

Clinical Applications

- DNA methylation
- Tandem repeats / Structural variants

Approach

8 @NanoporeConf | #NanoporeConf

Shear and End-Prep DNA

NANOPORE

Enrichment Yield

Enrichment Yield

16s rRNA gene is slow to evolve and used in characterizing microbial identification

NANOPORE

NANOPORE

Enrichment in Mixed Microbial Population

LONDON CALLING

Genomic DNA fraction	Predicted crRNA binding sites
12	7
12	7
12	1
12	2
12	0
12	0
12	0
12	0
2	5
2	2
	Genomic DNA fraction 12 12 12 12 12 12 12 12 12 12 12 12 12

Tested performance of this crRNA on a more diverse population

0
2018 LONDON CALLING
U

Species	Genomic DNA fraction	Predicted crRNA binding sites
Escherichia coli	12	7
Salmonella enterica	12	7
Bacillus subtilis	12	1
Lactobacillus fermentum	12	2
Enterococcus faecalis	12	0
Staphylococcus aureus	12	0
Listeria monocytogenes	12	0
Pseudomonas aeruginosa	12	0
Cryptococcus neoformans	2	5
Saccharomyces cerevisiae	2	2

Tested performance of this crRNA on a more diverse population

Enrichment in Mixed Microbial Population Input: 1ug combined microbial genomic DNA

Species	Genomic DNA fraction	Predicted crRNA binding sites
Escherichia coli	12	7
Salmonella enterica	12	7
Bacillus subtilis	12	1
Lactobacillus fermentum	12	2
Enterococcus faecalis	12	0
Staphylococcus aureus	12	0
Listeria monocytogenes	12	0
Pseudomonas aeruginosa	12	0
Cryptococcus neoformans	2	5
Saccharomyces cerevisiae	2	2

Total Data	230 Mb
Mean Read size	1950 bp

Size distribution of Data

Significant coverage in species with crRNA/PAM site from mixed population

	crRNA sequence	РАМ
	AGACCAAAGAGGGGGGACCTT	N <mark>GG</mark>
E. coli (7)	AGACCAAAGAGGGGGGACCTT	CGG
Salmonella (7)	AGACCAAAGAGGGGGGCCTT	CGG
B. sub tilis	CAAAGAGGGGGACCTT	
Lactobacillus Fermentum	G A C C A A A G A G G G G G	
Cryptococcus Neoformans	AAGAGGGGGACCTT	
S. Cerevisiae	AAGAGGGGGACCTT	

Enrichment in Mixed Microbial Population

Enrichment peaks observed in species without BLAST-identified crRNA target sequence

crRNA

Human Enrichment: hTERT gene

- hTERT gene encodes a core protein protein component of Telomerase
- hTERT activity is widespread in human cancers
- Methylation frequently disrupted at hTERT promoter in human cancers
- Repetitive and high GC nature of this region make it difficult to query with PCR amplicons

Liu et al. Genes. 2016 Jul; 7(7): 38.

Telomeres

Image source: Stanford Medicine

Input DNA: 2ug thyroid cancer cell line genomic DNA

Sheared DNA (TapeStation/BioA Trace)

Size distribution of Data

Chromosome 5

Chromosome 5

Chromosome 5

NANOPORE

Catalytically Inactive Cas9

Catalytically Inactive Cas9

Catalytically Inactive Cas9

Reads centered at location of crRNA

Cas9 complex evicted by ONT motor protein

Enrichment with DeadCas9

Methylation Analysis

Epigenetics – 3,000 ft view

Cytosine methylation part a complex organizational system that regulates transcriptional activity

5-mC Detection with Nanopore Sequencing

Training sets generated by treating PCR amplicons with methyltransferase (M. Sssl)

Able to distinguish between (TG / CG / C^mG) in context of different k-mers

Simpson JT. et al. Nature Methods. 14, p.407–410 (2017)

Methylation at the hTERT promoter

Thyroid carcinomas cell lines show distinct pattern of hypermethylation at the hTERT TSS

Brittany Avin

illumina BS-amplicon data

illumina and nanopore methylation calls at the hTERT promoter in BCPAP thyroid cancer cell line

Methylation calls in nanopore enrichment data demonstrates overlap with pattern observed in illumina data (BS-amplicons)

Methylation Calls Visualized

NANOPORE

Using SNPs to Phase Reads

47 @NanoporeConf | #NanoporeConf

NANOPORE

Clinical Applications

Image source: wikimedia commons By Nephron, CC BY-SA 4.0,

Clinical Applications : Cancer Screening

Profiling simultaneous of numerous cancer genes facilitates evaluating the cancer methylome

Diagnostic and prognostic potential

Clinical Applications : FSHD

FSHD

(Facioscapulohumeral muscular dystrophy) caused by shortening or hypomethylation of 3.2kb tandem repeat on chr4

Image author: Peter Jones, PhD

TIMP

LAB

- Andy Heron
- Winston Timp, PhD
- Rachael Workman, MS
- Brittany Avin
- Norah Sadowski
- Yunfan Fan
- Isac Lee
- Evi Mercken
- Roham Razaghi

JOHNS HOPKINS SCHOOL of MEDICINE

JOHNS HOPKINS WHITING SCHOOL of ENGINEERING

National Human Genome Research Institute 1R01HG009190-01A1

