

Simultaneous methylation and chromatin accessibility profiling on breast cancer cells

Isac Lee

Timp Lab Johns Hopkins University

Organised by

2 @NanoporeConf | #NanoporeConf

Epigenome

Epigenome : Multitude of chemical compounds that tell the genome what to do

NOMe-seq

NOMe-seq : Nucleosome Occupancy and Methylome sequencing (Kelly et. al. Genome Res. 2012)

• Simultaneously measures DNA methylation (CpG) and chromatin accessibility (GpC)

nanoNOMe

NOMe-seq : Nucleosome Occupancy and Methylome sequencing (Kelly et. al. *Genome Res.* 2012)

• Simultaneously measures DNA methylation (CpG) and chromatin accessibility (GpC)

DNA methylation detection using nanopolish

Nanopolish : post-alignment methylation caller using a hidden Markov model

(Simpson, et. al. Nat. Method 2017)

• Uses the raw current signal and alignment information to determine methylation status

Nanopore sequencing can distinguish DNA modifications

NanoNOMe

Detecting DNA methylation and chromatin accessibility

NanoNOMe captures chromatin states at CTCF sites

Anticorrelation of DNA methylation and open chromatin Chromatin states around CTCF agrees with NOMe-seq

NanoNOMe captures chromatin states on single reads

Methylati

GpC

Chromatin Protection (1-GpC)

Endogenous Methylation (CpG)

NanoNOMe shows read-level nucleosome variation

Chromatin Protection (1-GpC)

2

NanoNOMe in cancer

DNA methylation and chromatin accessibility in breast cancer cell lines

NanoNOMe on Breast Cancer Cell Lines

MCF-10A vs MCF-7

MALAT1 : downregulated in breast cancer

MALAT1 is downregulated in MCF-7

Promoter region is **methylated** Promoter is **inaccessible**

MALAT1 is expressed in MCF-10A

Promoter region is **unmethylated**

Promoter is accessible in a subset of reads - allele-specific or heterogeneous

NanoNOMe profiles are different at MALAT1

MCF-10A vs MCF-7

MALAT1 : downregulated in breast cancer

Expression in MCF-10A :

Unmethylated promotor accessible promoter in a subset **Silencing in MCF-7 :**

Methylated promoter Inaccessible promoter

Conclusion and Future Work

Using nanoNOMe, we can observe :

- CpG methylation and chromatin accessibility simultaneously on long reads
- Heterogeneity of chromatin states
- Allele-specific chromatin states

Future Work

- Haplotype chromatin states based on SNPs
- Different methylation motifs
 - Dam (GATC)
 - EcoGII (A)
- Other exogenous labeling techniques
 - damID

Acknowledgements

Timp Lab Dr. Winston Timp **Rachael Sparklin** Norah Sadowski Yunfan Fan Tim Gilpatrick Roham Razagi Evi Mercken

Dr. David Clark Lab Allison Dennis

National Human Genome Research Institute 1R01HG009190-01A1

Extra Slides