Agilent on Tap May 2018

Researching Cancer with the minION: Methylation and Structural Variation

Winston Timp Department of Biomedical Engineering Johns Hopkins University

Nanopore: Single Molecule Sequencing

90

80

60

Current (pA)

- Oxford Nanopore Technologies, CsgG biological pore
- No theoretical upper limit to sequencing read length, practical limit only in delivering DNA to the pore intact
- Palm sized sequencer

Oxford Nanopore Google Hangout March 2016

• Predicted sequencing output 3-6Gb

ATCGATCGATAGTAT
TAGATACGACTAGC
GATCAG

Disclosure: Timp has two patents (US 2011/0226623 A1; US2012/0040343 A1) licensed to ONT

10

Deamer et al 2016, Nature Biote

Time (s)

Current levels

20

Nanopore Sequencing Workflow

For Research Use Only. Not for use in diagnostic procedures.

Alignment

Sequencing Operation

Oxford Nanopore Technologies

- Protein nanopores on a synthetic polymer
- Multiple base-pairs at a time ("k-mers")
- Characteristic current signature is converted to nucleotide sequences

Nanopore Library Prep

- Library prep is very similar to methods for short-read sequencing •
- For DNA shearing we used Covaris gTubes or Diagenode Megaruptor
- After end-repair and A-tailing, leader adapter with motor protein is ligated •
- MinION arrays 512 channels (with 4 pores possible per channel) (shown bottom left from running software); dark green pores are sequencing, light green available, other colors inactive.

Improving Read Lengths: Size selection

	None	Sheared	Nanobind SS (4kb)	Blue Pippin SS (20kb)
Reads	353k	2060k	400k	435k
Yield	1.71Gb	10.1Gb	3.57Gb	3.65Gb
N50	17.3kb	6.6kb	15.7kb	19.0kb
Median	1.2kb	5.1kb	6.8kb	4.3kb

Read length and yield require some optimization and trade-offs

Improving Read Lengths: Rapid kit RAD004

15 minute protocol

Nanopore Sequencing Workflow

Nanopolish : uses alignment and current signal to improve base-calls

Alignment

Nanopolish tools

github.com/jts/nanopolish

Consensus Calling

Methylation Detection

Reference-based SNP Calling

chr20	44921212	т	С	165.9	1/1
chr20	44921404	Α	Т	381.3	1/1
chr20	44922637	Α	С	354.0	1/1
chr20	44934236	G	Α	24.3	0/1
chr20	44960481	С	Т	39.1	0/1
chr20	44963260	G	Α	99.1	0/1
chr20	44963607	т	С	207.3	0/1

Read Phasing

TAGAAGATATCATGTATAGTACGAT TAGAAGATATCATG TAGCAGATATCATGTATATTACGAT CATGTATATTACGAT

Nanopolish SNP Calling and Genotyping

Human Genotyping Results

		Platinum (Illumina) Genotype		
		0/0	0/1	1/1
	0/0	727598	1730	75
Nanopolish Genotype	0/1	3217	29096	914
	1/1	601	49	21718

Genotype accuracy at all sites: 99.2% Genotype accuracy at variable sites: 94.8%

Structural Variation

- Defined as an abnormality in large region (50b-3mb) of a chromosome
- Pervasive in cancer 50% of pancreatic ductal adenocarcinoma (PDAC) have SVs
- Common in tumor suppressor genes such as CDKN2A and SMAD4
- Short-read sequencing has difficulty resolving SVs, but nanopore sequencing long reads can stretch across them.
- High coverage needed to detect, but yield from nanopore sequencing still relatively low per flowcell (~3-5Gb)

Solution-phase Hybridization Capture

Use of Agilent SureSelectXT Targeted Sequencing System in cancer research

- ~90 bps biotinylated RNA probes complementary to target sequence
- Biotin-streptavidin interaction to enrich for the targeted region
- Optimization for long-reads : > 2 kb

Agilent Technologies

Targeted Capture Optimization

- Trial 1
 - Probe tiling, No empty spaces between probes
 - Target region
 - CDKN2A : 1.5 Mbp
 - Low stringency to allow mismatches
 - Result: 2.28 % on-target
- Trial 2
 - No tiling, average 400 bp space between probes
 - Target regions
 - CDKN2A : 1.5 Mbps
 - SMAD4 : 850 Kbps
 - High stringency to limit off-target capture
 - Consideration of known SV breakpoints
 - PDAC SVs from James Eshleman lab
 - Result: 30 % on-target

Agilent Technologies

Targeted Sequencing Performance

107k

56k

32k

20k

30%

26%

- Control : NA12878 lymphoblast
- Sample : PDAC from Eshleman lab
- Illumina short-read targeted sequencing for comparison
- > 300-fold enrichment
- > 20X average coverage
- Agilent App Note: https://goo.gl/8V2Fei

SMAD4 Capture Region

Agilent Technologies

Illumina NA12878

Nanopore

NA12878

Nanopore PDAC

For Research Use Only. Not for use in diagnostic procedures.

353X

332X

27X

20X

Nanopore Structural Variation Detection in Cancer

- NA12878 (ENCODE Human lymphoblast cell line)
- SVs detected with Sniffles (Schatz lab)
- chr9:21,038,354 21,038,506; 152 bps duplication
- Validated with PacBio data from Genome in a Bottle (Mt. Sinai School of Medicine)

w/Josh Wang (Agilent) & Jim Eshleman (JHMI)

Nanopore Structural Variation Detection in Cancer *SMAD4* Structural Variation

- PDAC cell line (Eshleman): Novel, putative SVs detected from PDAC
- chr18: 51,198,535 51,199,143; 600 bps deletion
- Possibly allele-specific SV

For Research Use Only. Not for use in diagnostic procedures.

w/Josh Wang (Agilent) & Jim Eshleman (JHMI)

Nanopore Structural Variation Detection in CancerResearchCDKN2A Structural Variation

Single Nucleotide Variation Detection in Cancer Research

Phased SNV analysis is possible with coverage from targeted sequencing

	Illumina	Pre-polish	Post-polish
Avg.			
Coverage	113	27	27
Correct	1133	2485	947
Total	1211	4138	1017
Precision	94%	60%	93%
Sensitivity	32%	69%	26%

Number of True SNVs: 3587(Eberle, et al. bioRxiv, 2016)

Cas9 Capture

- Instead of probe hybridization, we can use Cas9
- Cas9 holds on to DNA quite well even after cutting
- We are trying several different strategies
- These results are from the IDT Alt-R strategy we are working on with ONT

Cas9 Enrichment around target

- Capture around the hTERT promoter, region with aberrant methylation in many cancers
- gDNA source from a BCPAP thyroid cancer cell line (poorly differentiated papillary thyroid carcinoma
- Hard to amplify with bisulfite PCR because of high CG-density, required many iterations of primer design

Nanopolish Methylation

N = 658621 r = 0.895

Haplotype-Phased Methylation

Haplotype-Phased Methylation

this haplotype isn't

Methylation compare of capture/bisulfite

Preliminary data indicates methylation patterns largely concordant between bisulfite and nanopore

Phased Methylation

• Some of these are C->T SNPs which are impossible to resolve with bisulfite sequencing

Dead Cas9 Capture

• Capture with a dead Cas9 (same guide RNA target)

• Works, but needs more development

Summary

- Nanopore technology is full of potential for sequencing, but always choose the right tool for the right job. Often multiple approaches with complementary data yield the best results.
- Multiple bases affect the electrical signal from nanopores; rather than a problem, this can be an advantage, as each base is interrogated multiple times. Using a hidden Markov model and Viterbi algorithm, we can decode the electrical signal to a DNA base sequence.
- Long-read sequencing is great at detection of structural variants in cancer samples used in clinical research when coupled with hybridization capture this can be a powerful approach.
- Modifications to the primary DNA sequence (e.g. cytosine methylation) can be detected directly using nanopores, as compared to the gold standard of chemical modification (bisulfite treatment).
- Using PCR-less enrichment with Cas9 we can also detect methylation on long reads with nanopore.

Acknowledgments

WHITING SCHOOL of ENGINEERING

- Timp Lab
- Winston Timp, PhD
- Rachael Workman, MS
- Norah Sadowski
- Timothy Gilpatrick
- Yunfan Fan
- Isac Lee

- Eshleman Lab
- James Eshleman, MD, PhD
- Alexis Norris, PhD
- Umbricht Lab
- Brittany Avin

Agilent Technologies

Agilent Technologies Josh Wang, PhD Jonathan Levine, PhD

Looking for Postdocs!!

National Human Genome Research Institute 1R01HG009190-01A1

- Ontario Institute for Cancer Research
- Jared Simpson, PhD
- P.C. Zuzarte, PhD
- Matei David, PhD
- L. J. Dursi, PhD