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Revolutions in Science: Genomics

• Draft of the human genome was completed in 2001
• ~3 billion bases in size 
• Think about this like the first transistor (1947) – the watershed after which genomic and 

epigenomic engineering has exploded
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Nanopore: Single Molecule Sequencing
• Oxford Nanopore Technologies, CsgG

biological pore
• No theoretical upper limit to sequencing read 

length, practical limit only in delivering DNA 
to the pore intact

• Palm sized sequencer
• Sequencing output 5-15Gb

Deamer et al 2016, Nature Biotech
Oxford Nanopore Google Hangout March 2016

ATCGATCGATAGTAT
TAGATACGACTAGC
GATCAG

Disclosure: Timp has two patents (US Patent 8,748,091; US Patent 8,394,584) licensed to ONT
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• Protein nanopores on a synthetic polymer
• Multiple base-pairs at a time (“k-mers”)
• Characteristic current signature is converted to nucleotide sequences

Sequencing Operation

Oxford Nanopore Technologies



5

• Four steps to generating usable data with nanopore sequencing
• Base-calling : the process of converting raw signal into nucleotide 

sequences
• Nanopolish : uses alignment and current signal to improve base-calls

Nanopore Sequencing Workflow
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Prior Information for Decoding

• With no prior information, a given current value may not be called correctly (333pA would be called as GGG)
• If we know the previous triplet, the next triplet is well defined, leaving only four possibilities, resulting in the 

correct call of TCG

Timp, et al. Biophys J. 30, 349-353 (2012)
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Chardonnay grapes on minION Mouse genome on PromethION

Yield is continually improving; costs for good runs are now commensurate with costs (in raw 
yield) for Illumina sequencing (~$25/Gb)

Improving Yield
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Read Length
• Working with Circulomics we have 

been trying to get the read length up
• Using a size selection with their 

Nanobind material, read N50 can be 
substantially improved

• There is still room for improvement 
often still difficult to get both high 
yield and high read length
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Epigenetics: Modern

• Modern Definition of epigenetics involves heritable changes other than genetic sequence, e.g., positive feedback, 
high order structure, chromatin organization, histone modifications, DNA methylation.

• An analogy to a computer system:
• DNA Sequence = Hardware
• User input = Environment
• Systems Biology = Running programs
• Epigenetics = RAM
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Nanopore Sequencing of Modifications

Simpson et. al Nature Methods 2017

• To generate methylated samples, we treat 
unmethylated DNA (PCR amplified E. Coli gDNA) 
with M. SssI methyltransferase

• Distributions of observed current for 
GCT[T/C/mC]GA demonstrate the type of signal 
between methylated and unmethylated k-mers
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Nanopore: nanopolish methyltrain

• With nanopolish we can call the probability:

• Where Sm is the probability methylated for a given observable D and Sr the probability unmethylated)
• We then take the log of this likelihood ratio, and threshold for >2.5 as methylated; <2.5 as unmethylated
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Nanopolish Methylation

Jain et al Nat Biotech (2018)
Simpson et al Nat Methods (2017)

R9 calculates methylation 94% accurate at 77% of sites
NA12878 data shows .895 correlation with bisulfite
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NanoNOMe: Chromatin Accessibility with Nanopore
• NOMe-seq : Nucleosome Ocupancy and Methylome sequencing (Kelly et. al. Genome Res. 2012)

Simultaneously measures DNA methylation (CpG) and nucleosome occupancy (GpC)

Lee et al. bioRxiv 2018
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Nanonome Signal

• 95% of CpGs as methylated in the 72% of all possible CpG k-mers
• 97% of GpCs as methylated in 89% of all possible GpC k-mersLee et al. bioRxiv 2018
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NanoNOMe – DNAse Hypersensitive

nanoNOMe signal near DNAse-seq peaks validates the methodology
Lee et al. bioRxiv 2018



16

NanoNOMe: Aggregate CTCF binding sites
Chromatin Protection (1-GpC) Endogenous Methylation (CpG)

Lee et al. bioRxiv 2018
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Methylation in Repetitive Regions

Regions unmappable by NGS are mappable with long reads

Bisulfite 
Sequencing 
(Illumina)

nanopolish 
methcall
(Nanopore)
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Repeats: BRCA1

Reference genome doesn’t have many of these repeats properly – for BRCA1 region we aligned our 
reads against a custom GM12878 genome assembly (Jain et al)
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Allele Specific Chromatin and Methylation

• Using long reads, we are 
likely to encounter a SNP

• This allows for phased 
methylation and chromatin 
data

• Near PEG10 (imprinted 
gene):

• Maternal copy is 
methylated and 
inaccessible

• Paternal copy is 
unmethylated and 
accessible

Lee et al. bioRxiv 2018
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Coordinated Enhancers and Promoters

Using long reads, we can 
examine methylation and 
chromatin at some 
promoters and enhancers 
at the same time

Lee et al. bioRxiv 2018
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Cas9 enrichment Method

Gilpatrick et al bioRxiv (2019)
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Using a panel of guideRNAs
• Yield from   
• 3ug GM12878 gDNA
• MinION Flow cell 

Gilpatrick et al bioRxiv (2019)
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Using a panel of guideRNAs
• Yield from   
• 3ug GM12878 gDNA
• Flongle Flow cell 

Gilpatrick et al bioRxiv (2019)
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Enrichment of hTERT region
• We observe an “erosion” 

of the unmethylated (blue) 
CpG island in the promoter 
of hTERT in progressive 
cancer samples

• In the late metastasis a 
mutation in the ETS 
binding site of the 
promoter occurs in one of 
the alleles

• The mutant allele appears 
to have a more 
unmethylated island than 
the WT allele
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Structural Variants in Cancer
• Structural variants (SV), 

large insertions, 
deletions or 
translocations in the 
genome, are hard to 
detect with short-read 
sequencing

• Nanopore sequencing 
can map them well, and 
with targeted sequencing 
we can observe these

Gilpatrick et al bioRxiv (2019)
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Structural Variation Detection
• Deleted allele 

has >200X 
coverage, but 
intact allele has 
1/10 as much 
coverage

• Bias likely due to 
length of reads 
input into 
enrichment

Gilpatrick et al bioRxiv (2019)
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Single Nucleotide Variants
176 known SNVs exist in in span of 140kb in GM12878 

Flongle
Avg Cov : 30X 

MinION
Avg Cov : 100X 

Gilpatrick et al bioRxiv (2019)
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Questions in RNA:

• RNA modifications
• RNA dynamics
• RNA structure
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Kasianowicz, Brandin, Branton, & Deamer
PNAS 1996

Akeson, Branton, Brandin & Deamer
Biophysical J. 1999

Earliest nanopore experiments analyzed RNA
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Direct RNA Sequencing

PolyA+ RNA captured

Splint poly-T adapter ligation

Reverse transcription (optional)

Sequencing adapter ligation

Motor Protein

Tether
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Allele Specific Expression

Long reads allow identification of allele specific expression, even when SNPs are far from the exon
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Ionic current dwell time can be used to estimate poly-A tail 
lengths

PolyA estimator: 
https://github.com/jts/nanopolish polyA
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Predicting poly-A sequence length becomes tractable when 
consistent structural regions of dRNA reads can be identified and 
separated

Workman et al bioRxiv (2018)

https://github.com/jts/nanopolish
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Poly (A) tails of genes

• Poly (A) tails of different 
genes with >500 reads

• Of those we plotted the 
longest 2, shortest 2 and 
median poly(A) length genes

• Some of the genes have 
interesting distributions, with 
surprisingly long poly(A) 
tails.

Workman et al bioRxiv (2018)
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Poly (A) tails of isoforms
• Exploring further into different 

isoforms of DDX5
• We identified different 

isoforms had different poly(A) 
lengths (>25X coverage per 
isoform)

• Isoforms with retained introns 
had longer poly(A) tails

Workman et al bioRxiv (2018)
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Poly(A) tails of transcript classes

Exploring this trend: transcripts with retained introns have longer poly(A) tails than spliced transcripts
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Exploring the dRNA for m6A

• Eukaryotic elongation factor 
2 has a METTL3 motif 
GGACU (m6A writer) in the 
mRNA sequence 

• Has been shown to have 
m6A via IP-seq methods 
(Meyer et al Cell 2012) 

• Compared dRNA data with 
IVT’d dRNA signal

Workman et al bioRxiv (2018)
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Training RNA basecaller to recognize modified 
sites requires truth sets: oligo ligation

Short oligo (cheaper) containing METTL3 motif GGACU (m6A 
writer) ligated to handle (to achieve ~100b desired for seq)

Workman et al bioRxiv (2018)
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Isoform Specific m6A modifications: SNHG8

• Examining isoform dependence of 
modification signal: METTL3 motif 
in SNHG8 isoforms

• Different % of transcripts are 
modified dependent on isoform

Workman et al bioRxiv (2018)
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Summary
• Nanopore technology is full of potential for sequencing, but always choose the right tool for the right job.  

Often multiple approaches with complementary data yield the best results.
• Multiple bases affect the electrical signal from nanopores; rather than a problem, this can be an 

advantage, as each base is interrogated multiple times. 
• Modifications to the primary DNA sequence (e.g. cytosine methylation) can be detected directly using 

nanopores
• Exogenous labeling allows simultaneous detection of chromatin and methylation state using nanopore 

sequencing
• Targeted sequencing with Cas9 allows for long reads in targeted regions, sidestepping issues of cost.
• Direct RNA sequencing suggests we can measure isoforms, poly (A) tail lengths and even RNA 

modifications
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