13th International Workshop on Advanced Genomics

Tokyo, Japan June 2019

Using nanopore sequencing to interrogate the genome, epigenome and transcriptome

Winston Timp Department of Biomedical Engineering Johns Hopkins University

Revolutions in Science: Genomics

- Draft of the human genome was completed in 2001
- ~3 billion bases in size
- Think about this like the first transistor (1947) the watershed after which genomic and epigenomic engineering has exploded

Nanopore: Single Molecule Sequencing

- Oxford Nanopore Technologies, CsgG biological pore
- No theoretical upper limit to sequencing read length, practical limit only in delivering DNA to the pore intact
- Palm sized sequencer
- Sequencing output 5-15Gb

ATCGATCGATAGTAT TAGATACGACTAGC GATCAG

Disclosure: Timp has two patents (US Patent 8,748,091; US Patent 8,394,584) licensed to ONT

Sequencing Operation

Oxford Nanopore Technologies

- Protein nanopores on a synthetic polymer
- Multiple base-pairs at a time ("k-mers")
- Characteristic current signature is converted to nucleotide sequences

Nanopore Sequencing Workflow

Nanopolish : uses alignment and current signal to improve base-calls

Alignment

Prior Information for Decoding

- With no prior information, a given current value may not be called correctly (333pA would be called as GGG)
- If we know the previous triplet, the next triplet is well defined, leaving only four possibilities, resulting in the correct call of TCG

Improving Yield

Yield is continually improving; costs for good runs are now commensurate with costs (in raw yield) for Illumina sequencing (~\$25/Gb)

Read Length

- Working with Circulomics we have been trying to get the read length up
- Using a size selection with their Nanobind material, read N50 can be substantially improved
- There is still room for improvement often still difficult to get both high yield and high read length

••ocirculomics

- Modern Definition of epigenetics involves heritable changes other than genetic sequence, e.g., positive feedback, high order structure, chromatin organization, histone modifications, DNA methylation.
- An analogy to a computer system:
 - DNA Sequence = Hardware
 - User input = Environment
 - Systems Biology = Running programs
 - Epigenetics = RAM

Nanopore Sequencing of Modifications

Nanopore: nanopolish methyltrain

• Where S_m is the probability methylated for a given observable D and S_r the probability unmethylated)

• We then take the log of this likelihood ratio, and threshold for >2.5 as methylated; <2.5 as unmethylated

Nanopolish Methylation

N = 658621 r = 0.895

12

NanoNOMe: Chromatin Accessibility with Nanopore

• NOMe-seq : Nucleosome Ocupancy and Methylome sequencing (Kelly et. al. Genome Res. 2012) Simultaneously measures DNA methylation (CpG) and nucleosome occupancy (GpC)

Nanonome Signal

14

NanoNOMe – DNAse Hypersensitive

nanoNOMe signal near DNAse-seq peaks validates the methodology

NanoNOMe: Aggregate CTCF binding sites

GpC Methylation

Chromatin Protection (1-GpC)

Endogenous Methylation (CpG)

Methylation in Repetitive Regions

Regions unmappable by NGS are mappable with long reads

Repeats: BRCA1

7947 bp

Reference genome doesn't have many of these repeats properly – for BRCA1 region we aligned our reads against a custom GM12878 genome assembly (Jain et al)

Allele Specific Chromatin and Methylation

CpG Methylation

p21.3 p15.3 p14.2 p12.3 p11.1

94,656,000 bp

PEG10

,655,000 bp

SGCE

q11.23

4.827

94,657,000 bp

GpC Accessibility

- Using long reads, we are likely to encounter a SNP
- This allows for phased methylation and chromatin data
- Near PEG10 (imprinted gene):
 - Maternal copy is methylated and inaccessible
 - Paternal copy is unmethylated and accessible

Coordinated Enhancers and Promoters 10 kb

Using long reads, we can examine methylation and chromatin at some promoters and enhancers at the same time

Cas9 enrichment Method

Using a panel of guideRNAs

- Yield from
- 3ug GM12878 gDNA
- MinION Flow cell

Using a panel of guideRNAs

- Yield from
- 3ug GM12878 gDNA
- Flongle Flow cell

Enrichment of hTERT region

- We observe an "erosion" of the unmethylated (blue) CpG island in the promoter of hTERT in progressive cancer samples
- In the late metastasis a mutation in the ETS binding site of the promoter occurs in one of the alleles
- The mutant allele appears to have a more unmethylated island than the WT allele

Structural Variants in Cancer

- Structural variants (SV), large insertions, deletions or translocations in the genome, are hard to detect with short-read sequencing
- Nanopore sequencing can map them well, and with targeted sequencing we can observe these

Structural Variation Detection

 Bias likely due to length of reads input into enrichment

Single Nucleotide Variants

176 known SNVs exist in in span of 140kb in GM12878

MINION

		IP	Sensitivity	FP	PPV
default variant calls	SAMTOOLS	170	0.97	12	0.93
	NANOPOLISH	169	0.96	17	0.91
dual-strand filter	SAMTOOLS	142	0.81	3	0.98
	NANOPOLISH	156	0.89	1	0.99

Avg Cov :	100X
-----------	------

longle		ТР	Sensitivity	FP	PPV
default variant calls	SAMTOOLS	138	0.78	10	0.93
	NANOPOLISH	160	0.91	20	0.89
dual-strand filter	SAMTOOLS	61	0.35	0	1.00
	NANOPOLISH	100	0.57	1	0.99

Pol II

m⁶Am

- **RNA** dynamics
- **RNA** structure

Earliest nanopore experiments analyzed RNA

Direct RNA Sequencing

PolyA+ RNA captured

Splint poly-T adapter ligation

Reverse transcription (optional)

Sequencing adapter ligation

Long reads allow identification of allele specific expression, even when SNPs are far from the exon

Ionic current dwell time can be used to estimate poly-A tail lengths

Predicting poly-A sequence length becomes tractable when consistent structural regions of dRNA reads can be identified and separated

PolyA estimator:

https://github.com/jts/nanopolish polyA

Poly (A) tails of genes

٠

٠

٠

600 -Poly (A) tails of different genes with >500 reads Of those we plotted the longest 2, shortest 2 and Poly(A) length median poly(A) length genes Some of the genes have interesting distributions, with surprisingly long poly(A) tails. 0 RPS24 **DDX17** DDX5 SRP14 OLA1 Gene

Poly (A) tails of isoforms

- Exploring further into different isoforms of *DDX5*
- We identified different isoforms had different poly(A) lengths (>25X coverage per isoform)
- Isoforms with retained introns had longer poly(A) tails

Poly(A) tails of transcript classes

Exploring this trend: transcripts with retained introns have longer poly(A) tails than spliced transcripts

Exploring the dRNA for m6A

- Eukaryotic elongation factor 2 has a METTL3 motif GGACU (m6A writer) in the mRNA sequence
- Has been shown to have m6A via IP-seq methods (Meyer et al Cell 2012)
- Compared dRNA data with IVT'd dRNA signal

Training RNA basecaller to recognize modified sites requires truth sets: oligo ligation

Isoform Specific m6A modifications: SNHG8

- Examining isoform dependence of modification signal: METTL3 motif in *SNHG8* isoforms
- Different % of transcripts are modified dependent on isoform

Summary

- Nanopore technology is full of potential for sequencing, but always choose the right tool for the right job. Often multiple approaches with complementary data yield the best results.
- Multiple bases affect the electrical signal from nanopores; rather than a problem, this can be an advantage, as each base is interrogated multiple times.
- Modifications to the primary DNA sequence (e.g. cytosine methylation) can be detected directly using nanopores
- Exogenous labeling allows simultaneous detection of chromatin and methylation state using nanopore sequencing
- Targeted sequencing with Cas9 allows for long reads in targeted regions, sidestepping issues of cost.
- Direct RNA sequencing suggests we can measure isoforms, poly (A) tail lengths and even RNA modifications

Acknowledgments

National Human Genome Research Institute 1R01HG010538 1R01HG009190

- Jared Simpson
- Paul Tang
- P.C. Zuzarte
- Michael Molnar

Nanopore RNA Consortia

- UCSC (Akeson, Brooks)
- UBC (Snutch, Tyson)
- OICR (Simpson)
- JHU (Timp)
- Nottingham (Loose)
- Birmingham (Loman)

- Jawara Allen
- Brittany Avin
 - Sheridan Cavalier
- Yunfan Fan

- Ariel Gershman
 - Timothy Gilpatrick
- alier Isac Lee
 - Brittany Pielstick
- Roham Razaghi
- Norah Sadowski
 - Rachael Workman